LaunchDarkly %

LaunchDarkly
Security Overview

What you need to know
to integrate LaunchDarkly
securely into your organization

LaunchDarkly Security Overview

LaunchDarkly is an industry-leading SaaS product for feature
management. We empower software teams to deploy code
with less risk, which enables faster innovation. LaunchDarkly
supports the rigorous security and privacy requirements of
customers from a broad set of industries and geographies.

The paper outlines what you need to know to integrate
LaunchDarkly securely into your organization. It includes:

v/ Architectural considerations for security
v Minimizing user data sent to LaunchDarkly

v/ Best practices for secure operation

FAUNCHDARREYSECORTY™OVERVIEW

Architectural considerations for security

How LaunchDarkly integrates with your application

Basic view of LaunchDarkly’s streaming architecture

Feature flag changes Feature flag rules store
propagate in 200 ms and evaluated in memory

To use LaunchDarkly, you must embed LaunchDarkly Software Development
Kits (SDKs) in your applications to enable feature evaluations at runtime.
Your developers wrap the code path for a feature with a call to the
LaunchDarkly SDK to evaluate a feature flag. You can then manage the
feature flag status and create rulesets for the status based on contextual
data, like the current user, device details, or any other attributes required

by your business. Flag statuses and rulesets can be changed in the
LaunchDarkly Ul or via a REST API. The resulting status is used to modify
application behavior, like turning a feature on or off.

When a flag is updated in the Ul or API, the new data about that specific
change is streamed to each SDK for in-memory storage using a one-way,
server-sent connection. These updates propagate to all SDKs in 200ms or
less, ensuring your end-users always have the correct, up-to-date experience.

Client-side vs. server-side SDKs

LaunchDarkly has two different SDK architectures you can use—client-side
and server-side. Client-side SDKs have different security properties from
server-side SDKs:

EAYNCHDARREYSECOURTTOVERVIEW

e During initialization, LaunchDarkly server-side SDKs fetch all feature flags
and targeting rules from LaunchDarkly and store them locally, in memory.
This means that your application can enable a feature immediately without
making any external polling calls back to LaunchDarkly. For security
reasons, client-side SDKs cannot download and store an entire ruleset.
Client-side SDKs typically run on end users’ devices, so they are technically
capable of viewing and modifying all the data sent to them. Instead of
storing potentially sensitive data, the client-side SDKs confirm and update
flag rules by communicating with LaunchDarkly servers through streaming
connections or with REST API requests.

o By default, client-side SDKs aren't authenticated. Because of this, one user
could use another user's account to evaluate flags not meant for them.
To authenticate user data, you can enable the SDK's secure mode, which
requires you to pass a server-generated hash along with your user data.
To learn more, see the secure mode documentation.

¢ Client-side SDKs send context data in the URL as a GET query parameter.
If you are concerned about that data being stored in logs or by intermediary
proxies, you can use the useReport setting to use the HTTP REPORT verb.
This sends the context data in the request body, rather than in the header.

¢ You must enable each flag that you want client-side SDKs to be able
to access using the "Make this flag available to client-side SDKs"
setting or configure the flag defaults setting within your project's
configuration screen.

B Tolearn more, see the Client-side
and server-side SDKs documentation.

EAYNCHDARREYSECOURTT"OVERVIEW

https://docs.launchdarkly.com/sdk/features/secure-mode
https://docs.launchdarkly.com/sdk/client-side/javascript#users
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://docs.launchdarkly.com/sdk/concepts/client-side-server-side
https://docs.launchdarkly.com/sdk/concepts/client-side-server-side
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption

Relay Proxy
The Relay Proxy helps minimize the number of direct connections to

LaunchDarkly. Servers can connect directly to hosts in your own network,
instead of connecting directly to LaunchDarkly's streaming API.

Basic Relay Proxy sample configuration

- 2 — =
= Streaming API —) Relay Load = Servers

balancer
3 LaunchDarkly

E Redis/

Elasticache

The LaunchDarkly Relay Proxy is an open source service written in Go,
supported by LaunchDarkly, and available in a GitHub repository. It can
run anywhere Go can run in binary form. The Relay Proxy is also provided
as a Docker container and available in DockerHub.

The Relay Proxy is geared towards server-side SDKs, but also provides
mobile and client-side evaluation endpoints. This means that you can
initialize a client-side SDK directly against the Relay Proxy instead of
connecting it directly to LaunchDarkly. This may make sense if you don’t
want to allow LaunchDarkly traffic from your clients, or if you want to avoid
sending Private Context Attributes (see below) to LaunchDarkly.

[4 Tolearn more, see the Relay Proxy
documentation or view our blog post.

EAURCHDARRKEYSECURTTY"OVERVIEW

https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://docs.launchdarkly.com/home/relay-proxy
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://launchdarkly.com/blog/how-we-use-relay-proxy/
https://github.com/launchdarkly/ld-relay
https://hub.docker.com/u/launchdarkly

Offline Mode

Enabling offline mode on the Relay Proxy lets you run without ever connecting
directly to LaunchDarkly. Instead of retrieving flag and segment values from
LaunchDarkly's servers, the Relay Proxy gets them from files located on your
localhost or filesystem. This allows you to run your application in an isolated
environment, such as a FedRAMP High, while taking advantage of
LaunchDarkly’s feature management solution. However, it requires that you
orchestrate the transfer of flag settings to the local file system each time their
value changes.

To learn more, see the Offline Mode documentation.

Minimizing data sent to LaunchDarkly

Depending on your organization's security and privacy requirements,
you may want to consider what data you send to LaunchDarKkly.

What is Context Data?

Context data is configurable attributes your application sends to
LaunchDarkly to use in configuring targeting rules for feature releases.
This could be personal information about your customers or users,
device details, location details, or any other configurable properties.

You configure the LaunchDarkly SDK to collect and transmit attributes about
these properties to LaunchDarkly for the purpose of flag targeting. When you
evaluate a feature flag in your SDK, the evaluation includes a key associated
with an object. The object is the context data. It can include various key-value
pairs that contain information about the context of your feature evaluation.

AN CHPDARREYSECORTYOVERVIEW

https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://docs.launchdarkly.com/home/relay-proxy/offline
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption

Context data can include personally identifiable information (PIl), including
names, email addresses, or other unique identifiers, depending on how you
define your context. This data can be business-critical information and can
present significant risk if exposed to unauthorized parties.

Every organization collects data with different risk characteristics. You may
want to avoid sending sensitive user data to LaunchDarkly, although then you
can't target flags based on this information. However, you can target based
on information not sent to LaunchDarkly by using Private Context Attributes,
described below.

Private attributes

You can use the private attribute feature to restrict the context data your
service sends to LaunchDarkly while still using that data for flag targeting.
You can make all attributes private, choose specific attributes to make
private, or make attributes private for specific contexts.

Using the private attributes feature with server-side SDKs ensures that
no data ever leaves your server. Since all feature flag evaluation occurs
locally in memory, there is no need to send context data to LaunchDarkly.

For client-side SDKs, private attributes must still be sent to (but not stored by)
LaunchDarkly because feature flag evaluation occurs at endpoints hosted by
LaunchDarkly. You can consider using the Relay Proxy, as mentioned above,
to use client SDKs and private attributes without sending the data to
LaunchDarkly.

Note that when using the private attributes feature on either the server-side
or client-side SDK for user contexts, the user ID will always be sent to
LaunchDarkly. For this reason, we recommend the user ID be a GUID, hash,
or some other non-identifiable piece of data.

For more information, see the using private context attributes documentation.

EAURCHDARRKEYSECURTTY"OVERVIEW

https://docs.launchdarkly.com/home/users/attributes#using-private-user-attributes

Anonymous users

Anonymous users do not register as users in your Context list, and so the
usual data LaunchDarkly collects on a user isn't available for an anonymous
user. You can use anonymous users to hide personally identifiable information
(P11, but we recommend using private user attributes instead. You can force
all users to register in LaunchDarkly as anonymous users by setting the
anonymous user bit in your SDK to true when you construct the LaunchDarkly
User object from the domain user object.

If you use anonymous users or private context attributes, the Context list
won't populate with a complete list of users who access LaunchDarkly,
and autocomplete for private attributes won't function in LaunchDarkly.

B Tolearn more, see the Anonymous contexts
documentation.

Removing PIl from LaunchDarkly

In the event that you need to delete Pll sent to LaunchDarkly
as context data, you should delete the affected data in one
of two ways:

¢ The Context lists in the User Interface (Ul)

¢ Calling the delete context instance or delete user
APl endpoints

EAURCHDARRKEYSECURTTY"OVERVIEW

https://docs.launchdarkly.com/home/users/anonymous-users
https://docs.launchdarkly.com/home/users/users-list?site=federal#removing-a-user
https://apidocs.launchdarkly.com/tag/Contexts-(beta)#operation/deleteContextInstances
https://apidocs.launchdarkly.com/tag/Users#operation/deleteUser

Best practices for secure operation

Account security

LaunchDarkly has a number of features that support account security

best practices. By default, you use a username and password to sign into
LaunchDarkly. We support TOTP-based multi-factor authentication (MFA)
and allow you to configure your account to require MFA for all new members.

LaunchDarkly can also be integrated for single sign-on (SSO) using SAML.
We support ADFS, Azure, Google Apps, Okta, and OneLogin. We also support
SCIM for user provisioning.

Other notable account security features include:

You can create APl access tokens to access LaunchDarkly’s REST API

You can configure the web session duration and revoke active sessions

You can enable enhanced support to grant LaunchDarkly support
teams access to your account for troubleshooting purposes

You can connect external applications to your LaunchDarkly
account using integrations, OAuth and webhooks

Authorization

LaunchDarkly uses a Role-Based Access Control (RBAC) model to control
access to resources. By default, every account member in your LaunchDarkly
project gets the Reader role, which can view user and flag information,
including targeting data. The other built-in roles are Writer, Admin, Owner,
and No Access role.

You can configure granular access by Project, Environment, and flags
themselves, using custom roles and policies. To learn more, see the
Custom roles documentation.

EAYNCHDARRE-SECORTYOVERVIEW

https://docs.launchdarkly.com/home/account-security/mfa
https://docs.launchdarkly.com/home/account-security/sso
https://docs.launchdarkly.com/home/team/custom-roles
https://docs.launchdarkly.com/home/account-security/api-access-tokens
https://docs.launchdarkly.com/home/account-security/sessions
https://docs.launchdarkly.com/home/account-security/enhanced-support
https://docs.launchdarkly.com/integrations
https://docs.launchdarkly.com/home/connecting/oauth
https://docs.launchdarkly.com/home/connecting/webhooks

Teams

To simplify managing roles, LaunchDarkly supports the concept of teams.
Teams are groups of your organization’s members. Administrators can assign
custom roles to a team and control permissions at the group level rather than
individually assigning roles to members.

This allows you to map permissions in LaunchDarkly to your organizational
structure. For example, you can give mobile flag permissions to the mobile
team and desktop flag permissions to the desktop team, or give all
organization members access to the staging environment, but only people
on a particular team permissions to control flags on production.

B Tolearn more, see the Teams documentation.

Auditing

LaunchDarkly maintains audit logs of all changes to the LaunchDarkly data
model. These audit logs can be viewed in the Ul, exported via the API, or via
integrations to Splunk, LogDNA, CloudTrail Lake, and other destinations.

You can configure granular access by Project, Environment, and flags
themselves, using custom roles and policies.

B Tolearn more, see the audit logs and history tabs
documentation.

EAURCHDARRKEYSECURTTY"OVERVIEW

https://docs.launchdarkly.com/integrations/splunk
https://docs.launchdarkly.com/integrations/logdna
https://docs.launchdarkly.com/integrations/cloudtrail/
https://docs.launchdarkly.com/home/teams
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://docs.launchdarkly.com/home/flags/audit-log-history
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption
https://docs.launchdarkly.com/home/advanced/fips-140-2-encryption

Approvals

LaunchDarkly supports workflows to better map how your teams build, ship,
and control software. One security-related workflow is for users to request

or require approvals before making flag changes. For example, you may want
to get your manager to review and sign off on the changes you are about to
make in production.

Feature flags / Unity Concert Registration

Unity Concert Registration Added1yearago Maintained by @ April Ludgate
Infinity.site

Access to infinity website

Targeting Insights Variations History =~ Codereferences Settings

SCHEDULE CHANGES

SAVE CHANGES v

Save changes

Targeting
o ©
m () Evaluated 1hour ago

Prerequisites @

+ Add prerequisites
Request approval

Target individual users @

& Registration flow A _Ascsv

@ ronswandson@parksandre... X

Add users...

LaunchDarkly also supports teams that may already have change
management practices in place or use third-party tools to manage changes
to their production environment for compliance purposes. Our approval
workflows integrate with tools such as ServiceNow and Jira to allow users
to manage requests from within them.

B Tolearn more, see the Approvals documentation.

EAYNCHDARRE-SECORTYOVERVIEW

https://docs.launchdarkly.com/integrations/servicenow/setting-up
https://launchdarkly.com/integrations/jira/
https://docs.launchdarkly.com/home/feature-workflows/approvals

Appendix

Certifications

ISO 27001 and 27701

LaunchDarkly has received certification that our Information Security
Management System (ISMS) follows the ISO 27001 (Security) and 27701
(Privacy) standards. Further information can be provided with a signed NDA.

SOC 2 Typelll

LaunchDarkly undergoes a regular third-party assessment of our information
system controls against a set of AICPA Trust Services Criteria (TSC). A SOC 2
report can be provided upon request, with a signed NDA.

FedRAMP
LaunchDarkly’s Federal instance (LaunchDarkly Federal) is listed
in the FedRAMP marketplace as FedRAMP Moderate Authorized.

About LaunchDarkly

LaunchDarkly isn’t just a leader in feature management — it’s the first
scalable feature management platform. Feature management allows
development teams to innovate faster by fundamentally transforming how
software is delivered to customers. With the ability to gradually release new
software features to any segment of users on any platform, DevOps teams
can standardize safe releases at scale, accelerate their journey to the cloud
and collaborate more effectively with business teams. Today, LaunchDarkly
deploys peaks of 20 trillion feature flags a day, and that number continues
to grow. Founded in 2014 in Oakland, California by Edith Harbaugh and
John Kodumal, LaunchDarkly has been named on the Forbes Cloud 100 list,
InfoWorld’s 2021 Technology of the Year list, and the Enterprise Tech 30

list. Learn more at launchdarkly.com.

EAURCHDARRKEYSECURTTY"OVERVIEW

https://www.iso.org/isoiec-27001-information-security.html
https://marketplace.fedramp.gov/#!/product/launchdarkly?sort=productName
https://launchdarkly.com/

LaunchDarkly >

