
Progressive Delivery
The next iteration of Continuous Delivery centered
on risk reduction, business outcomes, and control.

Contents A new approach to software delivery	

What is Progressive Delivery?

How does Progressive Delivery work?

Why is Progressive Delivery important?	

Progressive Delivery vs. Continuous Delivery	

How feature management enables Progressive Delivery	

 Create and manage feature flags at scale	

 Feature flags for complex use cases and experimentation	

 Build, Operate, Learn, and Empower	

Start profiting from Progressive Delivery 	

02

06

08

10

12

14

16

17

20

25

2L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

A new approach
to software delivery

Elite software development teams share this in common:
they’ve all mastered Continuous Delivery.

Companies like Amazon, Google, and Netflix get small changes—features,

bug fixes, etc.—into production or users’ hands thousands of times a day.1,2

They move fast, yes. But they also learn fast.

3L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Each change generates data on user engagement, system performance,

and other key metrics. This data, in turn, fuels a virtuous cycle of iteration,

wherein the quality of the product constantly improves. In this way, elite

companies reap the benefits of Continuous Delivery.

Despite the clear benefits of this approach, many large organizations

are still reluctant to adopt it. Why?

For one thing, Continuous Delivery often implies shipping incomplete

code. That’s a scary proposition when talking about a production

environment for millions of users. Moreover, it embraces the reality of bugs

and small system failures. It accepts that some application changes will

inevitably cause problems.

And such problems are acceptable, so long as they happen early and on a

small scale.

Many software
organizations fear
that Continuous
Delivery will rob
them of their sense
of control over
deployments and
releases.

[1] Companies that deploy hundreds or thousands of times a day often are engaging in Continuous Deployment in addition

to Continuous Delivery. This means they have automated the deployment process. Whereas, Continuous Delivery entails

keeping code in a deployable state at all times but does not refer to automatically deploying code once it’s been committed.

But, of course, code deployments cannot be automated unless the code is in a deployable state. All that to say, when a team

engages in Continuous Deployment, it’s implied that they also are doing Continuous Delivery.

[2] Forsgren, Nicole, Dr., Frazelle, Jessie, Humble, Jez, Smith, Dustin, Dr. “Accelerate: State of DevOps 2019.” DevOps Research

& Assessment, Google Cloud. 2019: 22.

4L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

This approach contrasts sharply with the Waterfall delivery method,

in which developers toil for months, or years, on a set of features

before finally shipping them in one big heap. Many teams cling to this

approach because, in their minds, it allows them to retain control over the

deployment process.

Of course, Waterfall attempts to provide such control by reducing the

deployment and release frequency. And in any case, such control is

an illusion given how frequently bugs still occur in a Waterfall context.

Nevertheless, Waterfall practitioners fear that Continuous Delivery will rob

them of their sense of control.

Early proponents of Continuous Delivery introduced techniques to quell

such fears. Practices like blue-green deployments, canary launches, and

ring deployments3 enable teams to continuously deliver in a controlled

manner. But many teams either don’t know about these techniques or fail

to employ them.

Moreover, while such practices were born in a Continuous Delivery context,

they were not stressed as heavily as other aspects of the methodology.

As a result, large organizations are left with the false impression that

Continuous Delivery is dangerous.

5L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Other practices have since emerged that build upon the initial risk-

reducing techniques. Collectively, these techniques are like different

strands of the same rope, all aimed at giving teams greater control when

delivering software. When woven together, they become a new approach

to software delivery, one that iterates on Continuous Delivery and that is

essential to modern software development. Enterprises gain the control

they desire and thus pursue the core benefits of Continuous Delivery

safely, at their own pace, and on their own terms.

We call this new approach Progressive Delivery.4

Progressive Delivery
gives you the control
you need to pursue
Continuous Delivery
safely, at your own
pace, and on your
own terms. [3] Jez Humble discusses deployment rings and limiting impact in his book Continuous Delivery.

[4] Teams at IBM, Microsoft, and Target have written and talked about how they are making Progressive Delivery

(sometimes referred to as “Continuous Delivery ++”) work for them. Microsoft has been speaking about this approach for

a while and helping teams adopt the right tools to benefit from this approach. James Governor of RedMonk was one of the

first to popularize the term “progressive delivery.”

https://www.continuousdelivery.com/
https://launchdarkly.com/blog/deployments-at-scale-using-kubernetes-and-launchdarkly-to-run-the-ibm-cloud-container-service/
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-rollout-with-rings?view=azure-devops&viewFallbackFrom=vsts
https://tech.target.com/infrastructure/2018/06/20/enter-unimatrix.html
https://devblogs.microsoft.com/devops/configuring-your-release-pipelines-for-safe-deployments/
https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/

6L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

What is
Progressive Delivery?

Progressive Delivery has two defining characteristics.

Release progression and progressive delegation deliver more control

throughout release cycles and help ensure clean code.

7L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Progressive Delegation
This refers to delegating the control of a feature to the team most

responsible for the outcome. This might look like transferring the

ownership of a feature from Engineering to Product Management, then

from Product Management to Marketing, and so on.

Together, release progressions and progressive delegation reduce the

risks associated with Continuous Delivery and empower teams with more

control throughout their release cycles.

Stages of
feature delegation

Release Progression
The practice of releasing software/features to end-users at a cadence

that is appropriate for the business. This can be done continuously and

gradually, or it can even include the long-term goal of only shipping certain

features to a fraction of users. This practice builds upon the core tenet of

Continuous Delivery that requires the separation of the “deployment of

code” from the “release of features.”

Stage 1

Developers

Stage 2

Product Managers

Stage 3

Marketing

Stage N

Customer Success

8L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

How does Progressive
Delivery work?

Progressive Delivery gives all teams control over
which users see which code changes, and when.

It is a transformative cultural shift that enables your entire organization

to spend more time creating value and less time managing risk.

9L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

This starts with how teams build.

Many teams that engage in Progressive Delivery do trunk-based

development. Or, at a minimum, they do continuous integration and unit

testing as a part of their code merge process. Teams also use feature

management (a topic we’ll discuss later) as a best practice to maintain

control over features at varying states of readiness. Giving engineers the

freedom to continuously integrate code changes, with the power to hide

those features selectively, means they can safely deliver faster.

After that is validation.

Testing in production, canary launches, beta groups—these are ways

teams can provide access to a feature, starting with a small group and then

progressively increasing the size of the audience as they build confidence

in the feature’s stability and functionality.

And then releasing.

This means releasing features to user groups based on their tolerance for

new features, especially features that may be less stable. It also includes

providing non-engineering teams (Product, Marketing, Sales, or others)

the ability to release features to users based on business timelines.

Progressive
Delivery gives
teams the
confidence to
ship faster.

1 0L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Why is Progressive
Delivery important?

Progressive Delivery helps teams move faster,
in part, by reducing risk.

As teams shift to a Continuous Delivery model, they require

infrastructure that mitigates the risks of shipping buggy code.

1 1L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Progressive Delivery acts as this risk-mitigating agent by controlling the

audience that is exposed to each new change in your application. This

control makes you feel safe when shipping code, in turn, giving you the

freedom to deploy faster.

The importance of Progressive Delivery also comes into view when you

consider the shift to microservices and global distribution. Increasingly,

teams want to isolate changes and control the population impacted by

those changes. Moreover, development and operations teams have begun

looking to data scientists for insight into how partial rollouts are being

received and adopted. Progressive Delivery meets all these various needs

of modern software teams.

Ultimately, Progressive Delivery enables teams to achieve

Continuous Delivery safely and with greater control.

Roll out a new feature

to Australia first and

see what adoption

looks like.

Make a change

available to 10% of

users, then gradually

expand to 100%.

Update a critical service

but limit the impact of

that change to a small

cohort of users.

Control your releases

1 2L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Progressive Delivery
vs. Continuous Delivery

Progressive Delivery helps teams move faster,
in part, by reducing risk.

As teams shift to a Continuous Delivery model, they require infrastructure

that mitigates the risks of shipping buggy code.

1 3L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Continuous Integration and Continuous Delivery (CI/CD) emphasizes

the need to keep code in a deployable state at all times. This entails

continuously integrating the code of new features with the master branch

(or trunk) of your application, rather than waiting several weeks to check

the code of long-lived feature branches back into master. The goal of CI/

CD is to accelerate the development and delivery of software to users,

while reducing risk relative to Waterfall.

While CI/CD enables teams to move fast, the tools associated with it do not

have the inherent safety valves and control points to protect the service

and the consumer when failures occur. When teams deploy to production,

this can mean releasing changes to all users at the same time. This can be

catastrophic in cases where software changes contain major bugs.

And while canary deploys and percentage rollouts are a part of the CI/CD

model, greater protections need to be put into place to address the risks

that come with moving faster.

Progressive Delivery incorporates a “built-for-failure” model through the

use of feature flags and a feature management platform that consolidates

all the control points into a single interface. This is a key distinction of

Progressive Delivery—it requires this aspect of control.

Continuous Delivery

Emphasizes the need to keep

code in a deployable state at all

times. It lacks inherent safety

valves and control points needed

to protect the customer when

failures occur.

Progressive Delivery

Emphasizes control. It is built

for failure, and it includes kill

switches, safety valves, and

control points that enable you to

limit the blast radius of failures.

1 4L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

How feature management
enables Progressive Delivery

Many in the industry have chosen feature flags as
a tool for implementing Progressive Delivery.

When feature flags are combined with robust access controls,

collaboration, reliability, and compliance, you get a feature

management platform.

1 5L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

At its most basic, a feature flag is a control point, or if-then statement,

you add to your code. These control points are quite powerful in that they

separate deployments from releases. In other words, they let you deploy a

new feature to your production environment without releasing it to users.

Among other things, this allows you to safely test new features in

production and turn off problematic features without having to redeploy

your entire application. Attaching flags to every new feature enables you

to deliver faster, iterate more extensively, and virtually eliminate risk when

shipping code. At least in theory.

Feature flags come with a catch. They add complexity to your codebase.

The more feature flags proliferate, the more difficult they become to

manage. What’s more, when engineers manually create flags, they often

can only employ them for simple true-false (Boolean) scenarios.

A feature management platform like LaunchDarkly enables

anyone to create and manage feature flags on a large scale

across a wide range of complex use cases.

Feature flags are
quite powerful in that
they separate code
deployments from
feature releases.

1 6L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Create and manage feature flags at scale

LaunchDarkly’s feature management platform enables you to easily

manage the entire lifecycle of a feature flag, whether you’re using short-

term flags (e.g., for releases) or long-term flags (e.g., for operating your

application infrastructure). The platform shows you all the flags in your

codebase and lets you trace the origins of those flags—who created the

flag, what was the purpose behind the flag, etc. This comes in handy when

a feature is throwing a bug in production, as you can quickly find the flag in

LaunchDarkly and then, well, turn it off.

Manage several feature
flags in a single view

On LaunchDarkly’s dashboard,

you can view a list of your feature

flags and filter them in a variety of

ways, take action (e.g., archive a

flag or switch it on or off), manage

your account, and drill into an

individual flag.

1 7L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

As a platform, LaunchDarkly is designed for everyone. That’s why it is

equipped with SDKs for all the major programming languages, a growing

list of integrations with top developer tools, and API-first features that

enable a custom feature flagging experience. Underpinning the platform

is a best-in-class streaming architecture. Among other things, this means

that when you make a change to a feature flag, the change registers

instantly. And it has no effect on system performance whatsoever.

Feature flags for complex use cases and experimentation

Besides enabling teams to use feature flags at scale, LaunchDarkly also

provides a way to do sophisticated user targeting. For instance, teams can

create a user cohort based on a set of attributes (e.g., age, country

of residence, favorite Lord of the Rings character, etc.) and then release

certain features to that group exclusively.

Again, this is the kind of control that defines Progressive Delivery.

1 8L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Detailed user targeting
(segmentation) for a
targeted rollout

This screen shows a flag that

delivers different feature variations

to users depending on the

company name (ClientID), type of

user (User segment), and region

(State) associated with the

user’s account.

LaunchDarkly also enables teams to test multiple variations of a feature.

This alone marks a big advantage over traditional binary uses of feature

flags. And you can use these multivariate flags for experiments.

LaunchDarkly has experimentation capabilities baked into the platform.

You can set baseline metrics, run A/B tests, and conduct in-depth

experiments for operational and product engagement purposes—all

within the same platform you use for release management.

1 9L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Run experiments in a feature
management platform

Manage an experiment (stop, start,

pause, reset, delete), add/remove

metrics, and view the performance

of the experiment in numbers and

a visualization.

Build, Operate, Learn, and Empower

We’ve briefly explained how a feature management platform enables you

to both manage feature flags at scale and employ them for complex use

cases. Again, the reason we bring feature management up at all is that it

enables Progressive Delivery.

And it does so across four key areas of software development and delivery:

Build, Operate, Learn, and Empower.

2 0

Build
Build and deliver software faster and with less risk.

Deploy != release.

Engineers can deploy code—even incomplete code—to production

whenever they want; the marketing team can then release when they

are ready.

Test in production.

Rather than letting features pile up in QA, you can test code directly in

production without exposing it to the wrong users.

Targeted rollouts.

Progressively deliver features via targeted rollouts, canary launches, ring

deployments, and other controlled techniques while gathering valuable

user feedback and engagement data along the way.

2 1

Operate
Improve your application’s resilience and reliability.

Kill switches.

Instantly shut off features when they are hurting the user experience and

your application’s performance (no rollbacks or redeploys).

Dynamic configurations.

Change configurations on the fly for things like adjusting logging levels or

rate limiting API calls without having to redeploy.

Service metrics.

Measure how new features affect your key service metrics.

Safe migrations.

Use feature flags to perform safer migrations when swapping databases,

switching to microservices, and moving on-premises systems to the cloud.

2 2

Learn
Learn about your software and users by experimenting with everything.

Beta groups.

Conduct beta tests more seamlessly and gain feedback from real users

earlier in the development process.

Experimentation.

Run A/B/n experiments not only for front-end features but also for testing

large infrastructure changes, new algorithms, and more.

Baseline metrics and performance tests.

Set baseline metrics to compare the performance of one feature variant

to another while also measuring the impact of certain features on system

performance.

2 3

Empower
Empower teams outside of Engineering to play a bigger role in

delivering software.

Feature entitlements.

Reduce the burden on development teams by granting feature control

to customer-facing teams (e.g., Product Management).

Customer targeting.

Let Product, Marketing, Support, and Sales control exactly which

features a customer has access to, and when.

POCs and trials.

Allow sales teams to issue and run their own POCs and trials, so as to

create a better customer experience and further reduce the burden

on engineers.

Sunset features.

Reduce technical debt and gracefully remove old features without

needing much intervention from the engineering team.

2 4L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

A feature
management
platform offers the
tools needed to put
Progressive Delivery
into practice.

The four areas of development and delivery—Build, Operate, Learn, and

Empower—articulate the core value drivers of Progressive Delivery. You

can, of course, still do Progressive Delivery without adhering to every

facet described in this model. But we do see a consistent pattern of teams

adopting the practices in the four areas of Progressive Delivery over time.

If you’re progressively releasing features and progressively delegating

the control of those features in some fashion, then you are engaging in

Progressive Delivery, or at least moving toward it.

To reiterate, a feature management platform supports the core

use cases of Progressive Delivery. Many teams, for example, use

feature management to perform all types of release progressions.

Developers may create a feature flag to expose certain features only to

users in, say, Egypt (i.e., a targeted rollout). This same team could then use

the platform to progressively delegate the control of that flag. For instance,

the developers may transfer control to a product manager, who can then

regulate the rollout in a way that aligns with broader business objectives.

2 5L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Start profiting from
Progressive Delivery

Those who continuously deliver, continuously improve.

In doing so, they eat up market share and leave competitors

chasing at their heels.

2 6L A U N C H D A R K LY | P R O G R E S S I V E D E L I V E R Y

Indeed, Continuous Delivery is critical to success for modern software

development teams. But Continuous Delivery without control is scary.

Progressive Delivery gives teams the control they need to do CI/CD safely

and in a way that better supports critical business priorities. Feature

management is a key enabler of Progressive Delivery.

Enterprises that leverage a feature management platform reduce risk,

vastly improve the quality of their software, and accelerate their release

cycles—all in increasing measure. Most importantly, they deliver greater

value to their customers.

Ship fast, stay safe, and stay in control. That is the way of
Progressive Delivery.

Empowering all
teams to deliver and
control their software.
launchdarkly.com

sales@launchdarkly.com

https://launchdarkly.com/
mailto:sales%40launchdarkly.com?subject=Tell%20me%20more%20about%20LaunchDarkly

