
John Kodumal

Releasing and Operating Software
in the Age of Continuous Delivery

E� ective Feature
Management
E� ective Feature
Management

Compliments of

http://launchdarkly.com/

John Kodumal

Effective Feature
Management

Releasing and Operating Software in
the Age of Continuous Delivery

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03814-6

[LSI]

Effective Feature Management
by John Kodumal

Copyright © 2019 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nikki McDonald
Development Editor: Virginia Wilson
Production Editor: Justin Billing
Copyeditor: Octal Publishing, LLC

Proofreader: Amanda Kersey
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2018: First Edition

Revision History for the First Edition
2018-12-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492038160 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Effective Feature
Management, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and LaunchDarkly. See our
statement of editorial independence.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492038160
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Introduction. v

1. Feature Management. 1
What Is a Feature Flag? 1
Ship When You’re Ready 2
Deploy != Release 3
Test in Production 4
Stay in Control 9
Experiment with Everything 12
Customize on the Fly 14
Summary 16

2. Advice from the Front Lines. 17
First Steps with Feature Flags 17
Testing with Feature Flags 19
Managing Technical Debt 22
Scaling to Large Teams 23
Feature Flags Versus Blue/Green Deploys 25
Feature Flags Versus Configuration Management 27
Summary 28

3. Selecting a Feature Management Platform. 31
Feature Management 31
Feature Management Is Mission Critical 32
Design for Collaboration 35
Summary 36

iii

Introduction

Since the Agile revolution in software development, teams have
been pushing to move faster and faster every year. Over the past
decade, the discipline of continuous delivery has helped software
development teams increase their rate of delivery from months to
minutes. Accelerating the pace of change results in huge advantages
to both development teams and businesses: making frequent
changes, observing feedback, and reacting quickly is a competitive
edge, and every business is racing to gain the inside lane on their
competitors.

Software development professionals need to recognize this shift and
appreciate that achieving true continuous integration and continuous
delivery (CI/CD) puts software development teams in a fundamen‐
tally different world. This new world brings with it enormous bene‐
fits but also new challenges. Delivering more changes more
frequently can also introduce increased chaos and risk, especially
when our toolkits for controlling risk have not adapted as quickly to
this new world.

The tools and practices software developers have created to release
slowly and safely don’t translate to a world in which dozens of
changes are released each day. In fact, the very practices that were
originally so sensible can become actively harmful.

Software developers need a new set of tools that are specifically
designed for a world with continuous delivery. What if you could
fully decouple the act of delivering software from the act of releasing
features? What if you could deploy any time you want but release
only when you’re ready?

v

Imagine how development practices and software releases could
evolve in a world in which code deploys are decoupled from making
that code available to end users:

• Imagine that every deployment is deliberately, safely ramped up,
allowing you to react instantly to the unexpected.

• Imagine that you could know how each new feature will per‐
form in production—with real users and real data.

• Imagine being able to instantly turn off a misbehaving feature,
protecting the rest of your business.

• Imagine measuring the impact of each and every change so that
you know how it will affect users and your business before you
proceed.

In this book, I define a new category of software called feature man‐
agement and discuss the underlying technologies, use cases, and best
practices for adoption. I also include real-world case studies
throughout. Feature management enables businesses to dynamically
control the availability of application features to end users. Product
teams use feature management to progressively deliver new code
and features to end users, run experiments and A/B tests, customize
the user experience, and maintain highly reliable applications—all
while the application is running and without the need to deploy new
code. Wrapping each change in a feature flag and controlling it with
a feature management service empowers a variety of people across
the organization—from development and operations engineers to
product and marketing managers—to move faster with less risk,
while delivering better results for your customers.

vi | Introduction

CHAPTER 1

Feature Management

Feature management solutions enable businesses to dynamically
control the availability of application features to end users. In this
chapter, I introduce feature flags, a fundamental technology in fea‐
ture management solutions. I then discuss the various feature man‐
agement use cases, including progressive delivery, infrastructure
migrations, experimentation, and testing.

What Is a Feature Flag?
In simple terms, a feature flag is a decision point in your code that
can change the behavior of your application. Feature flags—also
known as feature toggles—have long been used to trigger “hidden”
code or behaviors without having to ship new versions of your soft‐
ware.

A feature flag is like a powerful “if ” statement:

if(enableFeature(one.click.checkout, {...}))
then
 /*show the one-click checkout feature */
else
 /* show the old feature/

In the early days of software development, this might have been a
command-line argument, an undocumented variable in a configura‐
tion file, or a hidden value in a registry. The value of each feature
flag was typically set early in the life cycle, at compile-time, deploy-
time, or runtime. After the value of the flag was set, the software

1

would run that way until it was recompiled, redeployed, or restarted.
Modern feature management is different.

There are two parts to the seemingly simple enableFeature call
highlighted in the preceding example that make it special. The sec‐
ond parameter to the function (elided for simplicity in our code
snippet) is a context. It typically identifies a specific user, but it can
contain any arbitrary data. This is important because it makes the
behavior of the function context sensitive. The code path taken can
change based on the context provided; for example, the user’s iden‐
tity, the plan they’ve paid for, or any other data.

Second, the enableFeature function calls out to the feature man‐
agement platform, which takes the context and a set of rules defined
in the feature management system to determine which code path is
executed. This makes the behavior of the function dynamic—the
code path can change whenever the rollout rules are changed,
without redeploying a new version of the software.

Feature flags can either be temporary or permanent. Temporary
flags are often used to safely deploy changes to your application or
to test new behaviors against old ones. After a new behavior is being
used by 100% of your users, the flag is intended to be removed. Per‐
manent flags give you a way to control the behavior of your applica‐
tion at any time. You might use a permanent flag to create a kill-
switch or to reveal functionality only to specific users.

This simple function is the source of enormous benefit for your
team. After you begin to build feature management into your appli‐
cation, you’ll develop new superpowers to ship when you’re ready,
test in production, stay in control, experiment with everything, and
customize on the fly.

Ship When You’re Ready
With the rise of continuous delivery, software teams ship new code
to production all the time. But the rapid pace of change brings new
kinds of risk. In the old days, there might have been months of test‐
ing and validation for each new deployment. But for a team practic‐
ing continuous delivery, new code goes from the development team,
through automated tests, and then directly to users in minutes.

2 | Chapter 1: Feature Management

Deploy != Release
Software developers attempt to mitigate this risk in two ways. First,
when deploying frequently, each change is less risky because it is
smaller and more isolated. Secondly, feature flags can be used to
control which users can see each change. This decouples the act of
deploying from the act of releasing.

When deployment is decoupled from release, feature flags give you
the opportunity to create a release strategy. Your team—developers,
product managers, DevOps, and marketers—can decide together, at
the beginning of the project, how a new change should actually roll
out to customers:

• How will the feature be released?
• Should anyone see it now?
• Who will be getting this feature first?
• Who will beta test it?
• Will it be rolled out progressively?
• Do I need to compare it against the old behavior?
• Do I need to hit a particular date for an external event?
• What do I do if something doesn’t go right?

Feature flags allow your team to create an agreed-upon process for
deployment with success criteria that you can define at each stage.
The flags give you the ability to move forward, or backward, based
on the success at each critical decision point.

Teams using feature management are no longer constrained by users
seeing new code the moment it hits production. Developers can
merge their work, even in a partially finished state, deploy it to pro‐
duction, and be confident that no users will experience it until they
turn on the feature flag. This also means that you can do true con‐
tinuous delivery, where new code is deployed as it is written.
Without some way to decouple deployment from release, teams are
stuck in a maze of long-running feature branches.

With feature management, not only are developers able to fully
adopt continuous delivery, but the business can now take advantage
of progressive delivery—the ability to strategically control when indi‐
vidual users or user segments gain access to new features. Develop‐

Deploy != Release | 3

ers can build at the pace of innovation, operations can deliver
continuously, product teams can iterate quickly, and marketing can
safely release features to the right users at the right time.

Case Study: Progressive Delivery
Atlassian, an enterprise software company (and former employer of
mine), planned to launch significant rebranding across its entire
product portfolio at its annual user conference. There were dozens
of different teams responsible for multiple products and websites
that all had to make the change at exactly the same time for maxi‐
mum effect.

Over the months leading up to the conference, feature and brand‐
ing changes were built into the company’s products but safely hid‐
den with a master feature flag.

While their CEO was on stage during the conference keynote, the
team simply switched the master flag, revealing the new branding
across all the products and properties at the same time. The
changes had already been deployed and tested—the switch merely
activated existing code that had been in place for weeks.

This software provider had a flawless rollout of its new brand. The
marketing team pulled off a dramatic reveal at the conference. The
development team didn’t need to push a massive number of coordi‐
nating code changes on a tight timeline. Feature management
enabled development teams to deploy as soon as the code was
ready, and left the moment of release up to the marketing team.

Test in Production
Test in production started out as a joke in the days of Waterfall devel‐
opment because software development schedules almost always slip‐
ped. Testing, which always came at the end of the life cycle, was
often compressed or skipped entirely. To meet the deadline, teams
often sarcastically joked that testing could happen after the feature
was released in production.

It sounds risky to test in production; you don’t want to expose your
users to untested software. That’s why software teams have built
elaborate patterns for testing and why most developers assume that
deployment must always involve difficult, multistage deployments to

4 | Chapter 1: Feature Management

testing and staging servers. But there are surprising benefits to skip‐
ping the staging servers and testing in production deliberately and
safely.

True Test Environments Are Difficult to Create
The software industry has moved toward distributed microservices
and an ever-expanding roster of external service providers. The vol‐
ume of messages, transactions, traffic, and data has increased signif‐
icantly, to the point that it is often impossible to replicate in another
environment.

Unlike 10 years ago, your software can’t be tested realistically on a
developer’s laptop. And even your testing and staging environments
are unlikely to be true representations of your service.

Real users are unpredictable and so is their data. Your test data, even
at high volume, will never capture every edge case. And the closer
you come to production-level traffic volumes, the more expensive
testing becomes, especially for projects that rely on external vendors
like Amazon Web Services.

So, kill your staging server! Test in production.

Test in Production
Testing with real, live users on your production environment will
always yield better data than any test or staging system. By testing in
production, you can gain a much more accurate understanding of
your system’s behavior.

The question is how to do this testing safely. With a feature manage‐
ment platform, teams use powerful targeting rules to control access
to new features and can instantly turn access to any feature off,
bringing back the old behavior instantly, without the need to roll‐
back code or redeploy.

Canary releases, ring deployments, and percentage rollouts are differ‐
ent patterns for safely testing in production by progressively
increasing the exposure of any new change. Instead of cutting over

Test in Production | 5

1 Blue/green deployment is a technique that includes running two identical production
environments. Only one of the environments serves production traffic while the other
environment is updated with the new software. When ready, the updated environment
takes on all production traffic, and the original environment is available for rollback if
necessary.

completely, as in a blue/green deployment,1 feature management
allows you to roll out a change gradually to an increasing popula‐
tion, monitoring as you go.

How Netflix Tests in Production
Netflix provides content to millions of consumers each day. Because
their system is so large and their users interact with it in so many
different ways, it is nearly impossible to create a test environment
that would yield reliable data. So engineers are not just allowed but
encouraged to test new code in production instead of in an artificial
staging environment.

This organization has made it safe for its engineers to test on real
users by using feature management by default. It uses percentage
rollouts, starting with tiny fractions of the user base, to observe the
effects of every change. Netflix has strong guidelines on how tests
are set up—including which users are exposed to a test at any given
time—and are always monitoring so that it can stop experiments
before anything has a significant impact on customers.

By testing in production, this team can quickly find and fix prob‐
lems, without affecting all customers, and still maintain a high level
of service.

Percentage Deployments
In a percentage-based rollout, small numbers of users are selected
randomly to experience the new feature. That percentage is then
increased over time until eventually everyone has access to the new
feature. By starting small and gradually increasing the number of
users, you have the opportunity to observe the behavior of the sys‐
tem under new conditions, and advance only if the signs are healthy
and user feedback is positive.

6 | Chapter 1: Feature Management

Percentage-based rollouts are useful when there is little variation in
your targeted user base or you are more concerned with operational
impact of your change.

Companies often automate percentage rollouts to gradually increase
unless there is an alert or monitoring alarm.

Case Study: Percentage Deployment
A large social media company wanted to use a new third-party ser‐
vice to provide images and profile information to enhance its users’
contacts. However, the application had hundreds of thousands of
users, each of whom had hundreds or thousands of unique contacts
in the address books they had saved in the system.

The team wanted to ensure that it had enough capacity to success‐
fully cache the information from the third party and to ensure that
these new requests didn’t adversely affect the rest of the system.

The team started with a group of beta customers that were selected
based on geography, which allowed it to see real-world behavior but
in small volumes. Through the beta test, the team found ways to
refine the caching system to be less expensive.

After the successful beta test, the team deployed the new function‐
ality to its customers in increments of 10% over the next several
days, monitoring how the new system performed in the new con‐
figuration as usage increased.

Having this level of control over the way in which a new feature was
delivered allowed the team to beta test, validate new functionality,
and roll out significant new functionality in a way that controlled
risk and gave more flexibility to the team.

Ring Deployments
Ring deployments, a term coined by Microsoft, is another method
to gradually expose features to different groups of users. The differ‐
ence is that the groups are selected specifically to manage the risk of
deployment. Microsoft deployments often start with small groups of
low-risk users and expand through larger, higher-risk populations.
This helps identify problems early while limiting the “blast radius”
of disruption if something goes wrong.

Test in Production | 7

A typical ring deployment begins by releasing first to internal users.
After you have verified that the change has been successful for that
set of users, you can expose the next set of users: the canary group.

Teams use canaries to measure the reaction from real users in pro‐
duction and look for early indicators of danger or success (similar to
how actual canaries were used in coal mines many years ago to test
for toxic gas). Even testing with a small number of users can
increase your confidence dramatically. If a feature generates an
unexpected or negative reaction, you can pause the deployment to
address problems or even turn the feature off entirely until you are
ready to try again.

Then, you can move on to the third ring: beta testers or early adopt‐
ers. These are users who are interested in having early access to new
features and are more prepared for problems or rough edges.

After you’re satisfied with your beta test, you can move on to a gen‐
eral release. But even this you can do in stages. You might start with
users of your free product and then move on to paying customers.
Or, you might start with small geographies and move on to larger
ones. Or, you might start with accounts with small numbers of users
or load, and expand to larger-load customers.

Not every ring deployment needs to follow this exact pattern. But
the defining characteristic of a ring deployment is using feature
management targeting rules to release strategically to users in order
to identify problems in the smallest, lowest-risk population.

Case Study: Ring Deployments
A team at a revenue intelligence company developed the pattern of
releasing new features first to a subset of its best customers.
Engaged and happy customers who had the chance to see new fea‐
tures first felt like they were special and in-the-know, and they pro‐
vided great feedback and were the most vocal in spreading the word
to other users. This canary group of super users wasn’t based on the
users who deliberately opted in to testing; rather, it was based on
users who were using and enjoying the product the most.

This company created its canary group by integrating its Net Pro‐
moter Score (NPS) survey solution with its feature management
system. The company automatically added NPS promoters into the
group. This also meant that if a customer’s NPS changed, that cus‐

8 | Chapter 1: Feature Management

tomer could be added or dropped from the canary group without
intervention.

Stay in Control
Creating and deploying new software is risky. Bugs can be intro‐
duced accidentally, the software can be delivered badly or to the
wrong people, or it can interact in unexpected and unfortunate ways
with existing software or hardware. It’s important to have safety nets
in place when things don’t go as planned. Feature management pro‐
vides the necessary control to reduce, and often eliminate, the risks
associated with deploying new software.

Flag Early and Often
I’ve found that many teams have a too-narrow definition of what
they can feature flag. The misconception comes from thinking that a
“feature” refers only to customer-visible features. In fact, there are
many benefits to feature flagging every significant change, even
those that are not visible to the customer, such as new backend
improvements or infrastructure changes. As a complement to
customer-visible feature flags, these “operational feature flags” give
DevOps teams powerful controls that they can use to improve avail‐
ability and mitigate risk.

Safety Valves and Circuit Breakers
A well-wrapped feature means that you can quickly turn it off if it is
performing poorly, which can mean the difference between a public
relations disaster and a minor hiccup with minimal impact. Enter
the safety valve.

Safety valves are permanent feature flags that you can use to quickly
disable or limit nonessential parts of your application to keep the
rest of the application healthy. On an ecommerce site, for example,
increased page load time can dramatically reduce conversion rates.
If nonessential features like product recommendations or reviews
are found to increase latency, a DevOps team can use a safety valve
to quickly disable the feature and reduce latency, all without requir‐
ing any change in code.

Stay in Control | 9

Safety valves are powerful tools that you can design into a system
from the outset, or introduce later, after a need has been identified.
It’s important to properly document these flags. Because they’re per‐
manent, you must note them as such so that they’re not accidentally
removed. You also should add them to service runbooks, with a
clear description of the symptoms that should trigger the use of the
flag as well as the impact to end users. Going a step further, if a
safety valve disables user-visible functionality, you should bake it
into incident management processes so that status page updates,
emails to impacted customers, and other relevant communications
are triggered.

Simple safety valves are first managed manually, but the next logical
step is to automate them, triggering changes to the flag’s rollout
rules based on error monitoring or other metrics. This kind of auto‐
mation is powerful, but you must use it with caution—a false posi‐
tive caused by faulty error monitoring could cause unnecessary
customer impact.

Case Study: Kill Switch
A consumer retail company with a large online presence experi‐
enced a complete outage the morning of Black Friday. When the
site tried to restore automatically, all the fresh requests for pages
caused the servers to overload again, resulting in hours of down‐
time and millions of dollars in lost revenue.

After the company finally was able to restore service, the team real‐
ized that it could have restored access much more quickly if it had
been able to turn off noncritical features. The more resource-
intensive parts of the team’s page weren’t necessary for customers to
check out, and serving a less feature-rich version of the site would
have still allowed the customers to purchase.

Atlassian uses feature flags heavily in its development processes.
With a combination of release flags and safety valves, it is able to
recover from 90% of its incidents within seconds. Only a small frac‐
tion of incidents require redeploys or code reverts.

10 | Chapter 1: Feature Management

https://twitter.com/kannonboy/status/1036909459791138817

Infrastructure Migrations
Infrastructure migrations, like database schema changes, are some
of the riskiest changes in software systems. They often involve com‐
plex interactions between different services and backing stores. They
can be difficult to roll back, and in modern applications, they must
usually be completed with no downtime.

With some advanced planning, you can use feature flags to remove
the risk from most infrastructure migrations. The key idea is to
decompose the problem into multiple steps, with each step con‐
trolled by a feature flag that you can roll back. At each step, you use
correctness checks to validate that it’s safe to proceed to the next
step. This approach works well for database migrations, but you also
can apply it to other infrastructure changes (e.g., changing cloud
service providers, vertically scaling a database, or swapping the
implementation of a specific algorithm).

Case Study: Infrastructure Migration
LaunchDarkly relied heavily on Elasticsearch. When the version it
was using was deprecated, the company needed to switch to the lat‐
est version immediately.

LaunchDarkly used feature flags to complete this transition quickly
and safely. Engineers created new classes for the new search syntax
and then put the new classes behind feature flags.

When the DevOps team started the Elasticsearch upgrade, it
deployed the upgrade to production on an index-by-index basis.
Throughout the rollout, the team was able to test the upgraded
search—with production data—and ensure that search results were
correct.

Using feature management, even for a “feature” that was invisible to
customers, gave the team control over the rollout process and a safe
space to test. This meant that any issues would be discovered early,
and the team could halt the migration and address those issues
before continuing with the upgrade for all indexes.

Stay in Control | 11

Experiment with Everything
Feature flags can serve different features or different feature versions
to different people, based on rules that you create. This is a powerful
new tool that allows you to experiment with different behavior in
your applications. You can perform extremely detailed and granular
targeting of your users based on their self-reported characteristics,
historical usage patterns, or any attribute you specify.

By defining a goal and comparing which behavior in your applica‐
tion leads to more successful completions of that goal, you can vali‐
date your hypotheses about product improvements and protect
yourself against unexpected changes.

Monitoring/Baselines
Every change that you make to your software is a kind of experi‐
ment, even if you don’t explicitly design them as such. When you
release a new change using a feature flag, you have a built-in capa‐
bility to measure the impact of the change.

You begin by establishing important baselines for your product,
such as the number of signups, dollars in sales, or searches per‐
formed. Then, as you progressively roll out, you can compare user
activity in the old cohort with the behavior in the new one to ensure
you are affecting your baseline metrics positively. Your application is
a complex system, and it isn’t always easy to predict the way users
will react to changes, even changes that might seem unrelated.
Measuring your new features against existing baselines helps to
reduce the risk of change.

Case Study: Optimizing and Measuring the User
Experience

Atlassian has more than a dozen products in its portfolio and
wanted to roll out a large-scale UI change for one of its most popu‐
lar products. Though the team was excited to deliver a new and
improved UI, it was also sensitive to how its customers would
receive the changes. The team wanted to carefully control how it
rolled out new features to users, but it wanted to test new function‐
ality with real customers before releasing to its entire user base.

12 | Chapter 1: Feature Management

Using a feature management platform with custom targeting, the
team identified its most frequent and demanding users. It was able
to target these users specifically to test its new UI and confirm that
it was developing new features these customers would find valua‐
ble. The team compared the behavior of power users in using the
new and the old UI, looked at how often.

When it was time to roll out functionality to the entire user base,
the team was careful to treat various cohorts differently. New cus‐
tomers saw only the new UI. Existing customers, however, received
different treatment. Power users saw the new functionality first, and
less technical users were given more time to adjust. Using powerful
targeting rules, they were careful to give all users within the same
account the same experience to minimize confusion.

A/B Testing
A/B testing, or experimentation, is a commonly used method of val‐
idating new ideas. This kind of experiment tests one thing against
another—variation A versus variation B, or new versus old. Multi‐
variate feature flags allow you to serve multiple variations of a fea‐
ture to different user segments: testing variation A versus B versus
C, or more. Most people use experimentation to test UI features,
such as placement of buttons, design layout, or word choice. But it’s
equally useful for testing backend functionality, such as evaluating
the effect of different content delivery networks (CDNs) or different
site search providers.

User Feedback
The ability to release changes to a limited set of users makes it much
easier to gather feedback about your product. You can create a beta
group of users and target feature flags specifically to that group who
have offered to provide you feedback. Testing new features with a
subset of users allows developers to find and address bugs as well as
glean valuable feedback about the features they’ve built.

As your team continuously delivers new features of your applica‐
tion, feedback is continuously flowing back to you. You have the

Experiment with Everything | 13

opportunity to harvest this feedback and develop your product to
meet the needs of real users.

Case Study: User Feedback
Honeycomb provides enterprise customers with powerful debug‐
ging, monitoring, and observability tools.

The company’s process for adding new customers to beta programs
was cumbersome and slow. After an interested customer was iden‐
tified, the product team had to make a formal request to the devel‐
opment team to change code in order to give the identified
customer access to the beta. Only after the request was approved
could the code be committed and deployed. Depending on how
busy the team was, the customer might need to wait days or weeks.

Besides being a long, unpredictable process that delayed getting
customer feedback, this back-and-forth also created unnecessary
work for the development team. The team was already using home-
grown feature flags, but there was no way for nontechnical team
members to make changes to features.

The team replaced its home-grown feature flag system with a fea‐
ture management platform and employed user-specific targeting to
grant access to beta features. Now, any product manager can enable
beta features for a specific customer in a matter of seconds without
the need to wait for a developer to change and deploy code.

Customize on the Fly
Customizing how users experience your application can be a power‐
ful way to improve engagement and increase conversions, sales, and
other business objectives. Historically, customization has required
significant investments in developer resources. With feature man‐
agement, nontechnical teams can now manage customization initia‐
tives without requiring direct support from developer resources.

Entitlements and Plan Management
There are many kinds of features that are better controlled with a
permanent flag. Often, features in your code might need to change
because the status of a user or organization changes; for example,
when a user upgrades from a free to a premium service or when a

14 | Chapter 1: Feature Management

specific organization needs a custom feature. In many cases, these
changes can and should be managed by sales and support, not the
development organization.

Case Study: Customization with Feature Flags
A logistics and fulfillment company created its own system to turn
features on and off, but only developers could access it. Every time
support needed to change a user’s account status, the support engi‐
neer needed to file a request with the development team and wait,
sometimes days.

Customers were frustrated that support could not help them imme‐
diately, support felt like it didn’t have the power to do its job, and
development was irritated because its engineers felt like support
kept bugging them about trivial yet time-consuming changes.

This organization decided that a feature management system that
all teams could use would alleviate frustrations on all sides. The
team designed a system with access controls and audit logs that the
development team trusted other teams to use independently. Now,
support, sales, and marketing all have the ability to adjust product
access as needed for each customer, and development can focus on
building what’s next.

Dynamic Configuration Management
Configuration parameters might need to be changed over time.
Adding feature flags to those settings allows you to change the way
your software operates without having to update or redeploy code.
This results in much quicker response times to changing conditions.

Case Study: Dynamic Configuration
A home automation company had thousands of voice-activated
internet of things (IoT) devices distributed in customers’ homes.
The company began getting reports from customers that the devi‐
ces were being triggered by television content. The devices would
hear the activation word from TV dialog and misinterpret the com‐
mand as coming from the homeowners.

It would have taken the company weeks to push full firmware or
software updates to the large number of IoT devices distributed

Customize on the Fly | 15

across many geographies in environments the provider doesn’t con‐
trol. Luckily, the team had built in a feature flag to its software that
could disable that particular initiation word. The change took a
matter of seconds and did not require the devices to reboot or
install updates, and the support line stopped receiving calls about
phantom activation.

Summary
There are a many uses for feature management that benefit different
departments in an organization. Your feature management solution
will empower your software development, technical operations, and
business teams to deliver value to customers faster, with less risk.
But how do you bring feature management to your team? In the
next chapter, you’ll find best practices for adopting feature manage‐
ment across your organization.

16 | Chapter 1: Feature Management

CHAPTER 2

Advice from the Front Lines

After your team has decided to take advantage of feature manage‐
ment, it’s easy to get started in small, simple ways. There are certain
techniques that you’ll want to keep in mind as you expand your
usage and incorporate feature management into your development
process to ensure that you realize the maximum benefit.

First Steps with Feature Flags
One of the great things about feature flags is that the cost to try
them is extremely low. There’s no need to completely shift develop‐
ment methodologies to incorporate feature flags into your workflow.
You can begin with a single flag, demonstrate its value, and intro‐
duce flags into your workflow slowly, use case by use case.

Your team can benefit from feature flags regardless of how far along
you are in adopting Agile methods. You can use feature flags to
release more frequently, even as you are working to modernize the
rest of your development methodology. Feature flags don’t require
you to have a distributed version control system (DVCS), continu‐
ous integration and continuous delivery (CI/CD), Kubernetes, ser‐
vice meshes, containerization, serverless, or any other specific
technology in place in advance. (Though flags work great in tandem
with many of those!) You can begin with feature flags now, no mat‐
ter what your architecture or deployment cadence is.

17

If your team is working on adopting modern development practices,
feature management can act as a beachhead—a critical first step
taken down that path.

Your First Feature Flag
A kill switch is a technique for quickly turning off a feature or rout‐
ing users to a previous version of a feature. Kill switches are the sim‐
plest use case for feature flags and make for a great first flag in your
software. I’ve found that teams derive immediate value by introduc‐
ing kill switches around a new feature. It’s also best to start with a
small feature; your first flag shouldn’t be part of a large, multimonth
delivery effort. Find quick wins to begin building the muscle mem‐
ory in your team for flagging.

It’s also important to follow these first flags through the entire life
cycle, including removing them after they’re no longer needed. After
this process has been completed successfully a few times, you can
begin introducing feature flags into your everyday workflow.

Feature Flags in Your Workflow
Feature management is valuable to many teams in an organization,
not just the development team. Depending on the need, features
might be managed by product managers, marketing, support, or
DevOps teams. When you’re starting a new project, you should
include feature management in the planning process. In the kickoff
meeting, it’s useful to ask the following questions to help define your
flagging strategy:

• What’s the release strategy for this feature? How risky is it? Are
there segments of users who should see the feature first?
Consider whether there should be a beta, canary release, or a
ring deployment for this feature.

• Are you gating access to the feature based on pricing plans or
entitlements?
Consider adding a permanent flag and specifying rules to deter‐
mine who should have access to the feature.

• Are there any circuit breakers or operational controls that you
should flag? What will you do if something goes wrong?

18 | Chapter 2: Advice from the Front Lines

Consider including operational flags to adjust the configuration
of your new feature.

• Is this feature nonessential and possibly resource intensive?
Consider adding a kill switch.

• What does success mean for this feature? Are there any experi‐
ments that you should perform, baselines you should measure,
or metrics to track?
Consider introducing a flag that compares new behavior against
the current behavior of a control group.

Based on your answers, you can define the flags that the develop‐
ment team should introduce. You’ll know which flags are intended
to be temporary, exactly how long they should live, and whether any
permanent flags will be introduced. It’s much easier to do this early,
before you’ve begun to build your new feature.

Flags and Branching Strategies
You can use feature flags with any branching strategy. They are an
important step in moving toward trunk-based development because
the ability to flag code and keep it hidden allows you to merge
aggressively, even before the branched code is ready for release.

Feature flags also complement feature-branch–based development
and DVCS. Teams that incorporate flags in conjunction with feature
branches can eliminate the need for long-lived branches, along with
the headaches associated with integrating long-lived branches back
into master.

Testing with Feature Flags
There’s no one-size-fits-all approach to testing with feature flags,
mostly because there’s no one-size-fits-all approach to testing in
general. However, it’s important to think through the impact of fea‐
ture flags on your testing strategy. With planning, feature flags can
work well with almost any approach.

Should I Test All Combinations of Flags?
It isn’t necessary (or even possible) to test every combination of fea‐
ture flags. Because each feature flag has at least two variations, you’d

Testing with Feature Flags | 19

have an exponential number of test cases to write. Testing each var‐
iation of a flag in isolation (using default values for the other flags) is
usually enough, unless there’s some known interaction between cer‐
tain flags. But you should identify combinations of feature flags that
are known to create user issues in test cases and guard against using
them in your code.

Flags and Libraries
Another decision that affects testing is whether you should use fea‐
ture flags in reusable library code. I think the answer is no—flags are
an application-level concern, not a library concern. Let’s illustrate
this with a small example. Imagine you have a search library that is
backed by Elasticsearch, with an API like the following:

function searchES(query, lastId) {
 ...
}

Imagine that you’re feature-flagging between two different search
systems, using a feature flag called use.algolia. You could make
the feature flag the library’s concern, which would require us to pass
the user context to the library, like so:

function flaggedSearch(query, lastId, user) {
 if (enableFeature("use.algolia", user)) {
 return searchAlgolia(query, lastId);
 }
 else {
 return searchES(query, lastId);
 }
}

This approach has a few problems. First, it introduces into the
library a dependency on the feature management system, making it
potentially more difficult to reuse and test. Second, it ties the appli‐
cation’s data model (the user context) into the library. The user con‐
text isn’t relevant to search; it’s relevant only to the feature flag. A
better way to structure this is to move the feature flag to the uses of
the search function and add a parameter to the search function indi‐
cating which engine to use:

enum SearchEngine {
 ALGOLIA,
 ES
}
function search(query, lastId, searchEngine) {

20 | Chapter 2: Advice from the Front Lines

 if (searchEngine == ALGOLIA) {
 return searchAlgolia(query, lastId);
 }
 else (searchEngine == ES) {
 return searchES(query, lastId);
 }
}

Now, feature flagging is an application-level concern. You check the
flag at the call sites to the search function:

 if (enableFeature("use.algolia", user)) {
 engine = ALGOLIA
 }
 else {
 engine = ES
 }
 results = search(query, lastId, engine);

Using this method, you’ve separated the flagging concern from
search and avoided introducing dependencies on the feature man‐
agement system and the application-level user object, which simpli‐
fies testing considerably.

Unit Testing
Even after structuring your code to keep feature flags in the applica‐
tion level, you’re still going to need to unit-test in the presence of
feature flags. The easiest way to write unit tests for code containing
feature flags is to mock-out the feature management service. Mock‐
ing is a simple way to avoid interactions with the external feature
management service, which is important for unit testing.

Integration Testing
In most cases, it’s still best to eliminate external dependencies in
end-to-end integration tests. You can accomplish this either by
using a mock object library or by having the feature management
service return default values or hardcoded values from a file or other
local source.

If external dependencies are not an issue for your tests, and you
want to modify feature flags for testing purposes, a feature manage‐
ment service with an API is a viable approach. The API should allow
you to programmatically create flags and change rollout rules. Ide‐

Testing with Feature Flags | 21

ally, it should allow you to also create and destroy environments so
that tests can start from a clean slate with each run.

Managing Technical Debt
Temporary feature flags introduce technical debt. Old flags that
should have been removed can litter code with conditional state‐
ments and prevent dead code from being removed. They also clutter
your feature flag dashboard, making it more difficult to manage
active flags.

Cleaning up flags aggressively is the key to preventing technical debt
from building up. There’s no royal road to flag cleanup, but there are
some processes that make it manageable.

Appoint a Maintainer
The developer who introduces a flag should be responsible for
cleaning it up. To enforce this, appoint a maintainer for the flag.
This person is responsible for recording the purpose of the flag,
ensuring that it has a well-defined rollout plan, and eventually
cleaning it up.

Set Expiration Dates
When I create a flag, I usually have some idea of how long it’s
intended to remain in the code. It’s common to have temporary flags
that can’t be removed quickly; for example, when running a weeks-
long A/B test or creating a flag that hides a months-long work in
progress. These flags are the most likely to slip through the cleanup
cracks. A strategy here is to give feature flags expiration dates at the
time of creation. When a flag reaches its expiration date, you can be
notified that it’s time to delete that flag. Some teams file issues to
track this, some teams use tags or naming conventions, and some
teams even create pull requests to remove the feature flags in
advance.

Flag Removal Branches and Pull Requests
One of the biggest barriers to deleting temporary flags is remember‐
ing what the flag did, where it needs to be removed, and what dead
code can be deleted as a result. Too many stale flags are a form of
technical debt and an antipattern that you should avoid. Surpris‐

22 | Chapter 2: Advice from the Front Lines

ingly, this amnesia kicks in quickly—even if a developer circles back
only a week later to delete a flag, it’s time-consuming to remember
the original context and locate all the places where the flag is refer‐
enced. One way to help overcome this challenge is to create a branch
and pull request (PR) to remove the flag at the same time the flag is
introduced. This extra branch or PR is kept unmerged until it is
time to delete the flag. After the flag has served its purpose, cleanup
consists of merging the PR, deploying the change, and deleting the
(now-inactive) flag from the flag management dashboard.

Finding Flag References
Eventually, you’ll run into a flag that nobody knows anything about.
Perhaps the maintainer has left the company or the flag itself wasn’t
documented well. You might not even know which codebase (or
codebases) reference the flag. In that situation, you’ll need a good
strategy for finding references to the flag in code. Some best practi‐
ces make this easier:

• Use a naming convention that makes feature flag strings stand
out. For example, if feature flags always have the sentinel prefix
fflag., a simple grep search is much more likely to identify
flags without many false positives.

• Name feature flags in commit messages. When you introduce a
flag, add a commit message like “Introduces feature flag flag-
key.” Similarly, when you delete a flag, add a commit message
like “Removes feature flag flag-key.” By doing this, you can
quickly find commits that affect feature flags with a Git log.

• If you need to do a comprehensive search, use your repository
hosting tool’s code search feature. You can also search Git his‐
tory with a command like git rev-list --all | xargs git
grep flag-key.

Scaling to Large Teams
I’ve covered how to introduce feature flags to your team’s develop‐
ment workflow, but how do you roll out feature flags across an
entire development organization? The more developers are working
on an application, the greater the challenge of delivering code
together, and the more you need to protect your changes with fea‐

Scaling to Large Teams | 23

ture flags. But a new set of challenges arise when you consider fea‐
ture flagging across hundreds or thousands of developers.

Permissions and Role-Based Access Controls
Feature management is a practice that can benefit your entire orga‐
nization. Your feature management console is the source of truth,
and it’s useful for anyone in your organization to be able see the cur‐
rent, accurate state of the world for your application for any given
customer.

You can more tightly control just who can modify a feature flag
using role-based access controls (RBACs). You can limit changing
specific flags, any flag in a given project, or environment (like your
production environment). You might want to limit write permis‐
sions to your DevOps team or to just the engineers who built a given
feature.

That said, I would encourage you to be as open as possible in pro‐
viding access to feature management throughout your team and
across all disciplines from engineering to marketing to support. Fea‐
ture flags are valuable as much for the collaboration they enable as
the simple technical capability of enabling or disabling something,
and those benefits should be shared as widely as possible.

Collaboration
After your team is using feature management, there are a handful of
practices to observe that will ensure smooth collaborating:

Document changes
It’s good practice to maintain a log of flag updates. It’s even
more helpful to leave a comment with every change. When
something is going unexpectedly wrong, being able to quickly
see if anything has changed recently (and why it did) is an
invaluable asset.

Make updates visible
Likewise, it’s good practice to make sure that your team knows
whenever changes are made. You can try sending notifications
to Slack or a similar collaboration tool so that the team knows
about flag changes in real time.

24 | Chapter 2: Advice from the Front Lines

Integrate
After you begin using feature management, answering the ques‐
tion “is this done yet” becomes a bit more complicated. The
code might be written and it might be deployed, but only a
small fraction of users might be able see it. So, it’s good practice
to connect your feature management platform—which is the
source of truth for feature deployment—to your other collabo‐
ration tools, like issue trackers or code repositories. It’s super
helpful to see the current deployed state of a flag directly from
an issue, ticket, or PR.

Organizing Flags
As feature management spreads across a larger organization, one of
the challenges is simply how to deal with the sheer number of flags.
Here are a couple of methods that you can employ:

Separate concerns
The most important step is to divide your flags into smaller,
related chunks of functionality. You might choose to divide by
microservice, by application tier, or by related functionality. But
separating your flags into projects or buckets can avoid the need
for developers to understand every flag in the system.

Name your flags well
It’s also important to help your team understand what flags are
for as easily as possible. So, adopt a naming convention that
makes it clear at first glance what a flag is for, what part of the
system it affects, and what it does. The more consistent you can
be across teams, the smoother your collaboration will be.

Feature Flags Versus Blue/Green Deploys
Blue/green deployments are a technique that involves running two
identical production environments (“blue” and “green”). At any
point in time, one environment is “live” (e.g., blue), while the other
(green) is “idle.” To prepare a release, new code is pushed to the
green environment. Gradually, traffic is pointed to the green envi‐
ronment until eventually the blue environment becomes idle. At any
point during the release, you can direct traffic back to the blue envi‐
ronment if problems occur. You can manage the deploy/ramp up/
rollback steps of a blue/green deployment workflow by using a con‐
tinuous delivery system such as Spinnaker.

Feature Flags Versus Blue/Green Deploys | 25

Blue/green deployments have some of the same benefits as feature
flags: they help reduce the risk of deploying new changes, and both
provide the ability to instantaneously roll back a problematic
change. Thus, feature flags and blue/green deploys are complemen‐
tary techniques. Although there are areas of overlap, each approach
has distinct benefits, and the best strategy is to use both. Following
is a comparison between the major characteristics of feature flags
and blue/green deployments:

Granularity
Feature flags work at the code level, and flags can protect
extremely fine-grained changes, down to individual code paths.
In contrast, blue/green deploys work by routing traffic to
entirely different versions of a service. Usually, this means that
blue/green deploys end up protecting services from a set of
commits packaged into a binary and deployed together to the
idle environment.

Applicability
Blue/green deployments can protect against any change, includ‐
ing infrastructure changes, configuration changes, and code
changes. Feature flags, on the other hand, are most easily
applied to code changes.

Ability to route users
Feature flags can change values for users based on arbitrary user
attributes and rules. This makes them extremely flexible. On the
other hand, blue/green deployments operate at the router level.
Routers typically don’t have access to user attributes, and most
are limited to simple percentage rollouts.

Intended users
Because blue/green deployments operate on the version level,
the primary users are generally DevOps engineers. Feature
management tools are used throughout the organization by
developers, product managers, and nontechnical users.

Lifetime
Because there are typically only two environments (blue and
green), and additional environments are expensive to keep in
operation, blue/green deploys are usually very short lived. Fea‐
ture flags, on the other hand, can live across many changes, or
even be permanent, depending on your need.

26 | Chapter 2: Advice from the Front Lines

When the infrastructure for blue/green deployments is in place,
every deploy should follow that pattern. This provides a catch-all
rollback plan if anything goes wrong with a deploy, including
changes that can’t easily be flagged, like configuration changes.

However, if a new problem is traced to a new feature that’s flagged,
you can turn it off directly without forcing a rollback of any other
change that was shipped on that release. In addition, you should use
flags for other use cases (like operational flags, A/B tests, and entitle‐
ments) that aren’t addressed by blue/green deploys.

Feature Flags Versus Configuration
Management
A service’s configuration is a set of parameters that is likely to change
between deployment environments (staging, production, develop‐
ment, etc.). This includes information such as the following:

• Credentials to access external services (e.g., Stripe, AWS)
• Settings for backing stores (e.g., pool sizes, host, and port info)
• Deploy values such as the externally facing hostname for the

environment

Configuration parameters are typically stored in files, environment
variables, or services like Consul or Redis. As services become more
complex, configuration management becomes a real concern. Tasks
like versioning configuration data, rolling back changes, and pro‐
moting configuration changes across environments become cum‐
bersome and error prone. More than one company has experienced
an outage caused by deploying a bad configuration change to a pro‐
duction environment.

For teams using feature flags successfully at scale, it’s tempting to
think about moving all of this configuration data into a feature man‐
agement platform. Feature management platforms solve many of
these change management problems, but I still do not recommend
moving configuration data into feature flags. Because feature flags
are dynamic (they can change at runtime) and context sensitive
(they can change depending on the user context), it is more difficult
to get a single, simple view of the configuration data. For most con‐
figuration data, there’s little benefit to be gained by making the data

Feature Flags Versus Configuration Management | 27

change based on the user context. In this case, simplicity trumps
flexibility.

Rather than migrate all configuration data into feature flags, I rec‐
ommend introducing feature flags selectively on top of whatever
configuration management mechanism is in place (files, environ‐
ment variables, etc.). These flags should be introduced only on an
as-needed basis. For example, imagine that you’re trying to manage
a database migration via feature flags. You might introduce a simple
Boolean flag called read-from-new-database. You can then modify
your configuration file as shown in the following example:

[database]
host = localhost
password = redacted
port = 1234
[new-database]
host = localhost
password = redacted
port = 5678

Now, you can use the read-from-new-database flag to connect to
the new database if true. Otherwise, the original database configura‐
tion is used. The configuration data is kept where it belongs, in the
configuration management system, but you’ve gained the benefits of
feature flagging, including the ability to do a controlled rollout.
With this approach, you can also easily clean up the flag and the
configuration file when the migration is completed.

If you had managed your migration by moving the entire database
configuration into a feature flag, perhaps by creating a multivariate
database-configuration flag, you’d need to keep the flag in place per‐
manently. There’s little long-term value to this because you’re
unlikely to use different database configurations for different users.
You’d also be storing your database credentials in the flag manage‐
ment platform, which is also not a best practice.

Summary
Armed with these ideas and tools, you now have a playbook for get‐
ting started with feature management. Remember to start small and
extend your usage of feature management after you’ve had a few
small wins. Before you get started with your first project, read the

28 | Chapter 2: Advice from the Front Lines

next chapter to learn what you need to consider when selecting your
feature management platform.

Summary | 29

CHAPTER 3

Selecting a Feature Management
Platform

Feature flags are not a new idea in software development. However,
the increasing pace of delivery has shifted the technique from a
rarely used tool to a requirement in modern applications. With the
more frequent use of flags and the sheer number of flags used in
software increasing, teams need a scalable, enterprise-grade feature
management platform. In this chapter, I discuss important require‐
ments and considerations for your feature management system.
Whether you decide to build your own or opt for a third-party fea‐
ture management service, you should ensure that it is well designed.

Feature Management
When teams embark on a journey of feature management, they
often go through similar stages of development:

Stage 0: Config file
This is typically where teams start with feature flags. Developers
create a flat file of values that is read at initialization time to
provide configuration values for an application. However, val‐
ues often can’t be changed after application startup and are
static, meaning it’s not possible to offer different settings to dif‐
ferent users. Flag values proliferate until they become difficult
to manage in a single file, and the files run the risk of losing
synchronization across different deployments.

31

Stage 1: Database
Developers often decide to move flag values into an application-
wide database. A database can be queried during runtime and
updates can be read without the need to reinitialize the system.
Simple database systems still usually lack the ability to custom‐
ize behavior on a per-user basis.

Stage 2: Database with context
As teams scale, they typically add more context about their flags
—who is the owner/maintainer of a flag, what part of the code it
is used for, and so on. Often, a rudimentary UI is added to give
team members visibility to what exists in the system. Many
teams investigate open source tools or dedicate engineering
time at this stage to make the system more useful and reliable.

Stage 3: Feature management service
Feature flags become such an important part of your team’s pro‐
cess that it requires a dedicated service to manage them. Scale is
typically the greatest driver, both the number of flags being
managed and the number of times they must be evaluated each
day. This is the stage at which the service goes from a developer
tool to a mission-critical business service. A robust feature
management platform will solve problems like the following:

• Distributing information globally and propagating flag rule
updates quickly

• Guaranteeing system redundancy and being able to survive
failures with a predictable outcome

• Ensuring that the appropriate set of people have access to
manage flags, and maintaining an audit log of changes

• Separating different teams, projects, and environments and
supporting multiple programming languages and frame‐
works

• Targeting specific users or segments with customizable
rules

Feature Management Is Mission Critical
Most homegrown systems never mature past stage 2 and can quickly
become a liability instead of an asset. For those organizations that
are interested in integrating feature management deeply into their

32 | Chapter 3: Selecting a Feature Management Platform

development process, I have a few recommendations to help you be
successful.

Design for Scale
Teams designing a feature management system need to consider
how to maintain the source of truth for flags, how that information
is delivered quickly to where it’s needed (to servers and even to end
users’ devices scattered around the world), and how that informa‐
tion is updated when states change.

It’s critical that whenever the application is evaluating a flag that it
always receives the same answer regardless of the server, datacenter,
or even the continent where the application resides. If one request is
served false and another one true for the same user in the same ses‐
sion, users get a confusing and inconsistent experience.

Polling Versus Streaming
In any networked system there are two methods to distribute infor‐
mation. Polling is the method by which the endpoints (clients or
servers) periodically ask for updates. Streaming, the second method,
is when the central authority pushes the new values to all the end‐
points as they change.

Both options have pros and cons. However, in a poll-based system
you are faced with an unattractive trade-off: either you poll infre‐
quently and run the risk of different parts of your application having
different flag states, or you poll very frequently and shoulder high
costs in system load, network bandwidth, and the necessary infra‐
structure to support the high demands.

A streaming architecture, on the other hand, offers speed advan‐
tages and consistency guarantees. Streaming is a better fit for large-
scale and distributed systems. In this design, each client maintains a
long-running connection to the feature management system, which
instantly sends down any changes as they occur to all clients.

Feature Management Is Mission Critical | 33

Polling

Pros Cons
Simple Inefficient. All clients need to connect momentarily, regardless of whether there is a

change.
Easily
cached

Changes require roughly twice the polling interval to propagate to all clients.

Because of long polling intervals, the system could create a “split brain” situation, in
which both new flag and old flag states exist at the same time.

Streaming

Pros Cons
Efficient at scale. Each client receives messages only
when necessary.

Requires the central service to maintain
connections for every client.

Fast Propagation. Changes can be pushed out to clients in
real time.

Assumes a reliable network.

Design for Failure
Feature management systems have become a mission-critical com‐
ponent in the production application stack. In many ways, they act
like the central nervous system of your application. Businesses now
rely on feature flags to maintain the state of applications and control
which features (or feature versions) users will experience. If they are
not designed properly, failures in the feature management system
can be catastrophic. If it fails (for whatever reason), your application
should be designed such that it continues to function.

In practice, this means designing multiple layers of redundancy.
When you write code you must consider what should happen if the
feature flag system fails to respond. Most feature flag APIs include
the ability to specify a default option—what is to be served if no
other information is available. Ensure that you have a default option
and that your defaults are safe and sane.

Your system should be resilient to momentary interruptions, be able
to reestablish a connection to your platform, and resynchronize to
the true state of the world, all while the application is running.

34 | Chapter 3: Selecting a Feature Management Platform

Design for Collaboration
The “Mythical Man-Month” is real. The larger the team working on
a software project, the greater the communication overhead. It’s true
when building software, and it’s equally true when operating a ser‐
vice. When a large team incorporates feature management into its
process, there are techniques that teams can use to work together
smoothly.

First, just as it is helpful to separate large codebases into smaller
units, you can separate your flags into different projects and help the
developers avoid the mental overhead of considering hundreds of
flags that they don’t need to care about.

When flags are created, they should be assigned an owner or main‐
tainer: someone who understands the context and the purposes of
the flag, and, even more important, when that flag is no longer use‐
ful and able to be removed. That developer is responsible for the life
cycle of the flag, including cleaning it up when it’s no longer needed.

The information contained in flags is valuable. It helps to describe
the behavior of the system and diagnose what users are actually
experiencing. And it’s a window into the development process and
helps everyone to know where a given feature is in the release cycle.
Generally, you’ll want to let everyone view the state of a flag. But
often, you will want to limit who can change the state of a flag. You
can use role-based access to ensure that the people have appropriate
access to the right flags, or even limit permissions per environment
so that only certain people can change the state of production. As
earlier examples have made clear, giving nondevelopment teams
access to the feature management system can have significant bene‐
fits to the business and to the development team. With that said, it’s
up to every team to design the right set of rules for your needs.

It’s also important to keep an audit trail of changes made to each
flag. Track and make visible every change that is made to a flag,
whether it’s turning the flag on and off, changing the targeting rules,
or updating variations. Record who makes the change, when, and
ideally why (comments are great for this). You can also use audit log
entries as notifications for the rest of the team via Slack or email.

Design for Collaboration | 35

http://bit.ly/2Ew3xTm

Adoptable
Most modern Software as a Service (SaaS) applications are com‐
posed of many different programming technologies, and multiple
languages are used to build the end-to-end application experience.
You might implement backend code in Java, Python, or Go, whereas
the web frontend is likely JavaScript based, and native mobile appli‐
cations are built for Android and iOS.

Your users don’t recognize that distinction; to them it’s one applica‐
tion. Thus, it’s important that your feature flags work consistently
across all of your applications. When a feature is enabled for a user
it must be available across platforms, whether that’s in a browser or a
native mobile app.

Look for a feature management platform that supports all compo‐
nents of the application, with simple SDKs that present a similar
API for your developers and a consistent experience for you users.

Summary
Feature flags have become a mission-critical component of the
modern application. Your feature management system must scale
and perform to meet the demands of your business. The require‐
ments and considerations outlined in this chapter give you a head
start for designing your own or evaluating third-party feature man‐
agement systems.

36 | Chapter 3: Selecting a Feature Management Platform

About the Author
John Kodumal is CTO and cofounder of LaunchDarkly, the leading
feature management platform. John was a development manager at
Atlassian, where he led engineering for the Atlassian Marketplace.
Prior to that, he was an architect and advanced technology
researcher at Coverity, where he worked on static and dynamic anal‐
ysis algorithms. He has a Ph.D. from UC Berkeley in programming
languages and type systems, and a BS from Harvey Mudd College.
All in, he has more than 15 years’ experience building tools for
developers. In his spare time, John climbs rocks, ice, small boulders,
and the occasional building, and he enjoys juggling startup and fam‐
ily life.

	Cover
	LaunchDarkly
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Feature Management
	What Is a Feature Flag?
	Ship When You’re Ready
	Deploy != Release
	Test in Production
	True Test Environments Are Difficult to Create
	Test in Production
	Percentage Deployments
	Ring Deployments

	Stay in Control
	Flag Early and Often
	Safety Valves and Circuit Breakers
	Infrastructure Migrations

	Experiment with Everything
	Monitoring/Baselines
	A/B Testing
	User Feedback

	Customize on the Fly
	Entitlements and Plan Management
	Dynamic Configuration Management

	Summary

	Chapter 2. Advice from the Front Lines
	First Steps with Feature Flags
	Your First Feature Flag
	Feature Flags in Your Workflow
	Flags and Branching Strategies

	Testing with Feature Flags
	Should I Test All Combinations of Flags?
	Flags and Libraries
	Unit Testing
	Integration Testing

	Managing Technical Debt
	Appoint a Maintainer
	Set Expiration Dates
	Flag Removal Branches and Pull Requests
	Finding Flag References

	Scaling to Large Teams
	Permissions and Role-Based Access Controls
	Collaboration
	Organizing Flags

	Feature Flags Versus Blue/Green Deploys
	Feature Flags Versus Configuration Management
	Summary

	Chapter 3. Selecting a Feature Management Platform
	Feature Management
	Feature Management Is Mission Critical
	Design for Scale
	Polling Versus Streaming
	Design for Failure

	Design for Collaboration
	Adoptable

	Summary

	About the Author

