
Build vs. buy guide
Explore the pros and cons between building
or buying a feature management system.

F E AT U R E M A N AG E M E N T

Contents Introduction

To build or to buy?

Feature flags vs. configurations

Build your in-house FMP

What if you’ve already built your own FMP?

10 capabilities developers need in a FMP

The verdict is clear: buy over build

02

05

07

10

15

19

24

2L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

You’re probably here because you’ve heard—or seen firsthand—how much easier life

can be when you use feature flags to separate code deployments from releases.

Maybe you want to try a feature management platform (FMP), but aren’t sure if you

should commit to a hosted version yet. Perhaps you’re considering an open-source

alternative or even taking time to build your own. This guide will help you determine

which is the best path forward for your team.

Introduction

}

()

3L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

To build or to buy?
Some developers are apprehensive about signing up
for a commercial FMP product. After all, why not just
develop your own?

4L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

And they may have good reasons to consider running their own FMP instead of buying one,

including:

• Tight budgets

• Unsure about relying on a service that isn’t free or open source software

• Desire for full control over all the systems that involve your code’s execution

• Inability to buy services without a lengthy procurement process

• Thinking feature management is just a few Booleans; why not put them in app

configuration and call it a day?

While these are all valid points, you should also consider factors like FMP implementation and

future organizational growth. But before we discuss these aspects, it’s important to first clear up

the differences between feature flagging and configuration.

Homegrown as a starting point

In a recent survey, just over half of current LaunchDarkly customers said they

began their feature flagging journey using a homegrown system. Read about

their biggest motivations for using feature flags, rates of deployment, and

more in our report, The State of Feature Management.

https://launchdarkly.com/state-of-feature-management/

5L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Feature flags vs. configurations
When deploying a server-side application, deployment
usually includes a set of configuration files (config).

6L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

The config and code are bundled together for the deployment, and the config usually doesn’t

change until the next deployment. Even if some config is read from somewhere other than the

bundled files, the app won’t read it again until it restarts.

In contrast, feature flags can change at any time. Flags are used to control app behavior, and so

when the flag changes, the app behavior should change immediately. No redeployment or restart

is required. This does not mean that the app code is replaced. Rather, the next time the app

evaluates a flag in a conditional, the returned value will be the new one.

The difference between the behavior of flags and config also shows their different uses:

Config should be used for everything the app requires to start, including

connections to essential resources such as the FMP.

Feature flags should be used for behavioral decisions that the app makes

after it has initialized.

7L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Getting started
Minimum viable functionality. Let’s examine
what it would take to build your own FMP.

8L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Here is a baseline set of functionalities that will still make feature flag usage worthwhile:

• Flags are evaluated in your app code, so you’ll need an API

• A persistent flag store to make flag definitions and values should stick

• A user interface to create and flip flags

• An audit trail to track changes (also vital for debugging)

• An API protocol architected to provide immediate flag updates

Because the primary goal is simply creating a minimum viable FMP, this list of functionalities

intentionally leaves out higher-value features like multivariate flags, experimentation, and

integrations.

The Build It Checklist

Completing the build checklist will give you clear direction on whether building a feature

management solution in-house is right for you or if it makes sense to invest in a solution like

LaunchDarkly.

These are some of the key considerations your team will need to ponder when exploring a DIY

feature management system, but this list is by no means comprehensive. As anyone who has built

something fairly substantial from scratch understands, it’s best to expect the unexpected.

9L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Goal

Determine what your team’s feature flagging needs. Consider goals based around

functionality, user experience, and cost.

Resource

Estimate the costs incurred from building your solution: Engineering hours diverted from

your core product, infrastructure, implementation, and any other resources required.

Plan

Make a plan for maintaining the system in the long run. Who will support it? Will you

dedicate an engineer to your own issues/additions? How much will maintenance cost?

Time

Estimate timelines for scoping, building, testing, and integrating the system into your

tech stack and process.

Rollout

Think about the rollout plan for training new users on the system, and who will be in

charge of that moving forward.

1 0L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Building your in-house FMP
Now let’s consider the implementation aspects. When
choosing to build your own FMP, you’re immediately faced
with two options for implementation.

1 1L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Code it Yourself

Depending on your organization’s size and needs, creating an in-house FMP that offers

basics like an API, flag store, user interface, audit trail,

and immediate flag updates could take anywhere from a few hours to

a few days.

However, this only applies to the first version, with an API client for just one language.

Once you start to account for aspects like feature requests, things get more complicated

and time-consuming. This hypothetical FMP also lacks the ability to provide testing in

production.

FOSS

If you don’t want to write an FMP from scratch, but you still want complete control over

the code and how it’s run, free and open source software, (FOSS), can be a perfectly

suitable solution.

There are plenty of FMPs out there with FOSS licenses. Most of them are pretty simple—

light on features but also limited to a specific language or application framework. Here

are some examples of language/framework-specific feature management platforms:

2

1

1 2L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Project
Name

Language/
Platform

Features

FF4J Java Custom extensible targeting rules; web-based dashboard with

monitoring and audit trail; CLI and REST API interfaces

Django

Waffle

Django (Python

web framework)

Basic-but-extensible targeting rules; some Javascript support; test

utilities

Flipper Ruby User targeting percentage rollouts; web UI; REST API; basic

instrumentation

Flagception Symphony (PHP

framework)

Powerful targeting rules; limited percentage rollouts; basic web API

FunWithFlags Elixir Basic user & group targeting; percentage rollouts

But if your team uses more than one programming language, you’ll need an FMP that

caters to them, and is available as a network service with a web user interface. These

systems offer client SDKs for multiple languages as well as network APIs (using REST or

GRPC) so they can be accessed by other platforms:

1 3L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Project
name

Language/Platform Features Update checks

Bullet Train Javascript (browser),

Node.js, Java, Python,

Ruby, iOS, Android, .NET

Multiple projects & environments;

segments; user attribute storage;

percentage rollouts; audit log;

experimentation

Polling

Flipt Go, Ruby Segments; basic rule editor;

percentage rollouts

Stream (GRPC)

Unleash Node.js, Java, Python,

Ruby, Go, .NET

Rollout strategies; webhook

integration

Polling

Flag Javascript, Python,

Ruby, Go

Powerful targeting rules; limited

percentage rollouts; basic web API

Polling

Tweek Javascript, .NET Percentage rollouts; experimentation;

rule editor; flag prerequisites; audit log;

OAuth support; webhook integration

Polling

1 4L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

One primary drawback these options have in common? They are all time-consuming.

And, as you know, this translates into added costs. Plus, you’ll still need to account for

factors like:

• Installing and configuring the FMP

• Getting agreement from the operations team, which has to adopt the FMP

as another component of the production system

• Ensuring that enough other people know how to maintain the FMP

Ultimately, paying a vendor ends up being no different than building and maintaining

your own FMP. The added expenses could include diverting developer resources or

missing other tasks and opportunities due to focusing on the in-house FMP.

1 5L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

What if you’ve already built
your own FMP?

You may already be using an FMP developed in-house that is
currently meeting your needs. However, as your organization
grows, you’ll inevitably outgrow certain tools and solutions.

This certainly applies to an FMP, so if you’re currently using an in-
house solution, here’s how you can determine if you’ve outgrown
it—and whether it’s time to explore alternatives.

1 6L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

How has your application changed?

Companies typically use multiple languages in their applications. Can your solution adapt to the

addition of new programming languages in the application stack? How many languages do you

need to support? What are your plans to add support for more languages?

Is there a need to run client-side vs. server-side?

Opening connections from the client-side resource to the server requires authorization and

implementation of security measures. If your user base is geographically diverse, a content

delivery network (CDN) may be needed to help with latency.

How will you support multiple use cases across multiple teams?

When you started, a single team was using a handful of flags to separate code deployments

from feature releases. But what if other departments now want to create feature flags? New use

cases require access control and permissions for safety and security purposes, so they will need

additional functionality.

Operational needs

• Audit logs to see flag changes across the organization

• Integrations with existing tools to toggle flags programmatically or kickoff

other workflows

• Adjust logging levels programmatically when an alert is received

1 7L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Customer Support needs

• Troubleshooting tools to know which variation a user was served to

troubleshoot issues

Sales and Product Management needs

• Multivariate flags to define multiple options that a flag will serve for running

experiments

• Advanced targeting rules to control who does or does not have access to

certain features

• Flag prerequisites and relationships to control groups of features

All teams eventually need

• Access control logs to restrict access to their team’s flags and ensure only

authorized people can toggle a flag on or off

• Reporting and insights on the flags served

• An intuitive user interface to toggle flags on and off

• Scalability for increased page views and greater numbers of flags

being toggled

• An organization-wide dashboard to display the flags, what’s enabled, a flag’s

purpose, and a point of contact for each flag

• Audit logs to see flag changes across the organization

1 8L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

How will you support multiple feature flag systems?

If you have multiple languages to support, you may need to deploy multiple solutions, as they are

often language-specific. In addition, without centralized feature management, different teams

may build or deploy a solution that meets their business needs.

Given that many feature flagging tools are language-specific, the more languages your

application uses, the more tools you’ll need to support it.

Bottom line: the more solutions you have with similar functionality, the more confusing it is to the

people supporting and configuring them.

You’ve outgrown your current FMP, now what?

If you’ve outgrown your in-house solution, whether due to expanded use cases or the desire for

greater control over the release process, it’s time to invest in a commercial solution. Read on to

learn more about the capabilities you should not compromise on.

• Integrations with existing tools to toggle flags programmatically or kickoff

other workflows

• Adjust logging levels programmatically when an alert is received

1 9L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

10 capabilities developers
need in a FMP

Opening connections from the client-side resource to the server
requires authorization and implementation of security measures.
If your user base is geographically diverse, a content delivery
network (CDN) may be needed to help with latency.

2 0L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Design phase

It’s important to start thinking about using feature flags at the design phase. The

decisions about your feature made during this phase will inform how you create

associated flags. For example, this could influence how you configure targeting rules for

the feature, or how to test and collect feedback on that flag.

Broad SDK support

Having a wide variety of SDKs at your fingertips in a single platform helps you choose

the best programming language for your features. Don’t limit yourself to a single SDK or

deploy multiple tools to cover all your SDKs.

Experimentation

As you are designing a feature, there may be questions about the best way to proceed.

What if you could run an experiment and make a data-driven decision instead of trusting

your gut?

Having data to support a design decision can save hours of work having to refactor

code or start over from scratch. Also, sharing information on experiments with product,

customer success, or support is an essential part of running a successful experiment.

Look at what types of collaboration and access is available to people outside of the

development organization.

2 1L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Build and testing phases

Quality, safety, and reliability are essential to any FMP. Here are some ways a good FMP

can ensure what you’re releasing is safe and hits its targets.

Granular targeting rules for developing and testing

Targeting a single user or group of users based on various attributes gives you the

flexibility you need when determining who should see what, when. You can deploy code

to production early in the development phase in order to test out the design. After all,

feature flagging is about testing your features in production without releasing them to

everyone.

Safety & security

Feature flags are not only utilized during the build process, they’re also used for

operational purposes and managing entitlements. You need to ensure you can’t

accidentally disable or change the wrong flag. And if something goes wrong, you

need detailed audit logs to see what changes were made and by whom for a given

environment. These logs can quickly identify whether a recent flag change resulted in

unexpected behavior.

2 2L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Release phase

It all leads up to this, but even if things go haywire at the release phase, a quality FMP will

allow you to pull the plug on new feature ASAP.

Targeted and percentage-based releases

Not all features release to production in the same way. Some features target specific

groups of users, while others can be released more broadly. What’s key is the flexibility

to release features in a variety of ways and the ability to target users based on multiple

attributes, whether predefined or custom.

Schedule release progression

Releases may not always be convenient to your schedule, especially when considering

time zones or scheduled time off. Scheduling changes to targeting rules for future dates

and times means you don’t have to plan your day/week/life around a scheduled release.

Automatically disable a flag

Releases don’t always go smoothly. When a failure occurs, you want to limit the

blast radius and get that feature turned off as quickly as possible. Integrations with

observability and monitoring tools to automatically trigger

a flag upon an alert can stop a situation from impacting more users.

2 3L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Post-Launch

A feature isn’t done until the code for the feature flag has been removed. Nobody likes it

when technical debt accumulates. Functionalities should exist to help you identify and

remove flag code from launched features.

Filter relevant flags to reduce the accumulation of
technical debt

If your company has many flags, you need a way to quickly filter and find relevant flags

to address technical debt. Filtering all flags by status, you can see which flags have not

rolled out to all users, which are permanent, and those that can be safely removed.

Configure Slack reminders

One way to make sure flags don’t build up in your codebase is to have reminders and

notifications sent to you regularly. Through the tools you use regularly, you can have your

platform send you a message when a flag’s status becomes launched or inactive. It could

even provide a helpful reminder to remove the flag.

Find all flag references in your codebase

Knowing a flag needs to be removed isn’t the same as remembering all the files that

reference that flag. Ensure you can integrate your flag platform with your code repository

to see which files refer to a flag quickly.

2 4L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

The verdict is clear:
buy over build

For most developers, a feature flag system sounds simple
to implement—and it often is in its most basic form. The
majority of engineers could build a bare-bones feature
management platform in just a few days

2 5L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

However, things aren’t that simple. If you do the math and factor in time and support costs, you’ll

discover that running your own flag system is usually far less economical than paying a trusted

vendor.

But this isn’t just about costs; you also need to account for the features of the FMP. By investing

in a feature management platform that offers the ten capabilities listed above, you ensure a more

seamless deployment environment that streamlines every process, from design to release and

beyond.

Besides, once you’ve experienced the profound relief of turning off buggy code by flipping a

switch, you’ll never want to go without flags again.

Ultimately, the choice to build or buy is your call. If you’re interested in taking the plunge with

LaunchDarkly, see why consulting firm Forrester said you’ll get a 245% ROI from our platform in

their report, The Total Economic Impact of LaunchDarkly.

https://learn.launchdarkly.com/total-economic-impact/

2 6L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Life with Launchdarkly

Customers using LaunchDarkly for feature management achieved:

9x 76%
increase in
deployment
frequency

decrease in time
from commit to
deploy

-1 day
mean time to
repair (MTTR)

See more of the impact of LaunchDarkly.

https://launchdarkly.com/roi-feature-management/

2 7L A U N C H D A R K LY | B U I L D V S B U Y G U I D E

Compare Features Company A Company B Company C

Basic feature flag use cases

Advanced targeting

Streaming achitecture

Flag scheduling

Flag approvals

Flag triggers

Workflow templates

Experimentation

20+ integrations

SDKs for every major language

How we stack up to the competition

Choose the best feature management platform for you.

Empowering all
teams to deliver and
control their software.
launchdarkly.com

sales@launchdarkly.com

https://launchdarkly.com/
mailto:sales%40launchdarkly.com?subject=Tell%20me%20more%20about%20LaunchDarkly

