
CO
M

PLIM
EN

TS O
F

Brent Laster

Continuous Integration vs.
Continuous Delivery vs.

Continuous Deployment
The Processes and Tools of Effective

Continuous Delivery Pipelines

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08891-2

[LSI]

Continuous Integration vs. Continuous Delivery vs. Continuous Deployment
by Brent Laster

Copyright © 2020 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Jeff Bleiel
Production Editor: Kristen Brown

Copyeditor: JM Olejarz
Interior Designer: David Futato
Cover Designer: Randy Comer

November 2017: First Edition
July 2020: Second Edition

Revision History for the Second Edition
2020-06-23: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Inte‐
gration vs. Continuous Delivery vs. Continuous Deployment, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and LaunchDarkly. See our
statement of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence

Table of Contents

Continuous Integration vs. Continuous Delivery vs.
Continuous Deployment. 1
Defining “Continuous” 2
Continuous Integration 4
Continuous Delivery 6
Continuous Deployment 8
DevOps: Bridging the Gap Between Teams 11
Continuous Integration and Continuous Delivery in the

World of Containers 12
Kubernetes 14
Conclusion: Continuous Value 15

v

Continuous Integration vs.
Continuous Delivery vs.

Continuous Deployment

Continuous Integration, Continuous Delivery, and Continuous
Deployment—if you do any work in the area of software delivery, it’s
impossible not to encounter these terms on a regular basis. But what
does each of these processes do for your product development and
release cycles? I’ll explain what they really boil down to, what prac‐
tices are associated with them, and what kinds of tooling are avail‐
able to implement them. I’ll show what they offer, how they differ,
and how they help, both separately and together, companies release
software to customers frequently, reliably, and with high quality.
And I’ll show you how the core practices of DevOps fit in with all of
these.

Armed with an understanding of those terms, I’ll then explain how
these processes fit into the modern environments of containers that
run in managed clusters in the clouds.

A software delivery pipeline generates releases from source code in a
fast, automated, and reproducible manner. The overall design for
how this is done is called Continuous Delivery. The process that
kicks off the assembly line by feeding in raw materials is referred to
as Continuous Integration. The process that ensures quality is called
Continuous Testing, and the process that makes the end product
available to users is called Continuous Deployment. Done correctly,
such a pipeline minimizes barriers, handoffs, and confusion among
development teams and operational teams—goals that are part of
the DevOps approach to software delivery.

1

Defining “Continuous”
Continuous doesn’t mean “always running.” It does mean “always
ready to run.” In the context of creating software, that includes sev‐
eral core concepts and best practices. These are:

Frequent releases
One of the benefits of adopting continuous practices is enabling
the delivery of quality software at frequent intervals. Frequency
here is variable and can be defined by the team or company. For
some products, once a quarter, month, week, or day may be fre‐
quent enough. For others, multiple times a day may be desired
and doable. Regardless of the frequency, the goal is the same:
deliver software updates of high quality to end users in a repeat‐
able, reliable process.

Automated processes
A key part of enabling this frequency is having automated pro‐
cesses to handle nearly all aspects of software production. This
includes building, testing, analysis, versioning, and, in some
cases, deployment. It may not be possible to automate every‐
thing, and some things, such as user acceptance, may need to
remain manual or may seem too difficult to automate. But
adopting an “automate everything” mindset will often inspire
new ways of thinking about current processes that can surface
new approaches for automation.

Repeatability
If we have processes that always have the same behavior given
the same inputs, then we can automate the processes so they are
repeatable. This means if we go back and provide a certain ver‐
sion of code as an input, we should get the corresponding set of
artifacts. Having the artifacts exactly match may also depend on
having the corresponding versions of any external dependencies
available to be included. With DevOps principles, this would
also mean that the processes in our pipelines can be versioned
and re-created.

Fast processing
“Fast” is a relative term here. Regardless of the frequency of
software updates/releases, continuous processes are expected to
transform source code changes into updated deliverables in an
efficient manner. Automation takes care of much of this. But

2 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

1 “Fail fast” means that the pipeline processing finds problems as soon as possible and
quickly notifies developer(s). Those developer(s) should then correct the problem
ASAP and submit the updated code for another run through the pipeline.

2 Automated processing should be able to proceed without human intervention. Human
intervention may still be desired or needed at certain points, as discussed in this
section.

automated processes may still be slow. For example, integrated
testing that takes most of the day may be too slow for product
updates that have a new candidate release multiple times per
day.

Fast problem detection and remediation
One of a pipeline’s jobs is to quickly process changes. Another is
to monitor the different tasks/jobs that create the release. A
third is to notify developers of failures as soon as possible since
code that doesn’t compile,1 or fails a test, can keep the pipeline
from proceeding. A secondary benefit of notifying developers
quickly is that they will still have the context of the change fresh
in their minds.

Continuous implies that a change pushed into source control can
proceed, with little or no human intervention,2 through the stages of
builds, testing, packaging, and so on. And combined, these stages
form a pipeline of processes and applications to take changes and
turn them into a releasable product. This pipeline can go by various
names, including Continuous Delivery pipeline, deployment pipeline,
and release pipeline. Although handoffs between stages are intended
to be automatic as the sequence progresses, there are a few cases in
which human intervention can be required:

• When a change breaks and should be fixed before proceeding
• When you want a human to validate something before it pro‐

ceeds (e.g., user acceptance testing or choosing to manually
approve deploying to customers)

• When an automated process breaks
• When a process or workflow needs to change or be updated

With this background in mind, let’s look closer at what each of the
three terms encompasses.

Defining “Continuous” | 3

3 I will use “CI” as an abbreviation for Continuous Integration. But I will not use abbre‐
viations for Continuous Delivery or Continuous Deployment because referring to
either or both as CD would be confusing.

Continuous Integration
In the Continuous Integration (CI)3 phase, changes from a developer
are merged and validated. The goal of CI is to quickly validate these
pushed code changes. The intended outcome is to identify any prob‐
lems in the code and automatically notify the developer. This helps
ensure that the code base is not broken any longer than necessary.
The CI process detects when code changes are made, and runs any
associated build processes to prove the code changes are buildable.
It can also run targeted testing to prove that the code changes work
in isolation (function inputs produce the desired outputs, bad inputs
are flagged appropriately, and so on).

Unit Tests
These targeted tests are called unit tests, and developers should be
responsible for creating them. Developers know the contexts about
what the individual blocks of code are supposed to be doing and can
best align that with the test cases. In fact, one development
approach, known as test-driven development (TDD), requires unit
tests to be designed first—as a basis for clearly identifying what the
code should do—before the code is written.

In the standard CI workflow, a developer creates or updates source
code in their local working environment. They then add tests to
ensure that a function or method works. Because code changes can
be frequent and numerous, and because they are at the beginning of
the pipeline, the unit tests must be fast to execute. They also must
not depend on (or make calls to) other code that isn’t directly acces‐
sible, and should not depend on external data sources or other mod‐
ules, such as a database component. If such a dependency is
required for the code to run, those resources can be mocked by
using a stub. The mocked stub looks like the resources and can
return values, but doesn’t actually implement any functionality.

Typically, these tests take the form of asserting that a given set of
inputs to a function or method do, or do not, produce a specific
result. They generally also test that error conditions are properly

4 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

flagged and handled. Various unit testing frameworks, such as JUnit
for Java development, are available to assist with this.

CI Tools
After completing the code and validating it with local testing, the
developer can then push their code and unit tests into the shared
source code repository. A variety of source code management sys‐
tems, such as Git, are available for use today. If the code is pushed
and does not merge cleanly with other users’ changes, the developer
must manually fix the conflicts and try again.

After the code is merged in, a CI tool such as Jenkins can detect or
receive a notification that a change has been made in the source
code repository. It will then automatically grab the latest set of code
from the repository and attempt to build it and execute any associ‐
ated tests. Jenkins can detect changes by regularly polling the source
control system to check for changes. Or, it can be configured to do a
scheduled, periodic build of whatever code is current. As another
option, most source control systems can be set up to send a notifica‐
tion that a change has occurred to Jenkins or tools like it.

Prechecks
A variation on this simple workflow involves adding in “prechecks”
on the code before it makes it all the way into the source code repos‐
itory. A simple form of this might use hooks or triggers. Hooks and
triggers are processes that can be run before or after a particular
source control operation to execute a process. Another tool, Gerrit,
can intercept pushes to a remote Git repository and wait for a per‐
son to sign off on a review of the code before allowing it to go into
the repository. It can also initiate early Jenkins builds of the code at
that point as another pass/fail check.

Public or enterprise hosting sites for Git source repositories, such as
GitHub, GitLab, and Bitbucket, offer a further variation of pre‐
checks. Users wanting to contribute changes to a hosted, shared
source repository can “fork” the repository (make a copy of a Git
repository in their own user space in the hosting site). They can
then push candidate changes to their copy. To get it merged into the
original repository, they can submit a “pull request” (also known as
a “merge request”). This asks the owner of the original repository to
review and merge in their code changes. Pull/merge requests are

Continuous Integration | 5

http://junit.org/junit5
http://junit.org/junit5
https://git-scm.com
https://jenkins.io/index.html
https://www.gerritcodereview.com
https://github.com
https://gitlab.com
https://bitbucket.org

connected to automatic checks such as builds or simple testing. Such
connections provide some confidence that the change is workable
and won’t break the existing code base.

Most prechecks also include a way to review and comment on pro‐
posed code changes. Once changes are approved and merged, they
can kick off the Continuous Delivery processes.

Continuous Delivery
Continuous Delivery refers to the chain of processes (the pipeline)
that automatically gets code changes and runs them through build,
test, packaging, and related operations to produce a deployable
release. Typically, it does this without much or any human
intervention.

Continuous Delivery takes the changes pulled in by CI and executes
the rest of the pipeline processes to produce the deliverables.
Optionally, it may trigger Continuous Deployment processes to
make releases from the pipeline automatically available to users. The
mechanism of Continuous Delivery is the Continuous Delivery
pipeline, although it may be known by other names.

While we may think of the sole deliverable of a pipeline as being a
deployable set of code, along the way there are key intermediate out‐
puts. In fact, one of the key things that happens in the pipeline is
that new changes (validated and merged during CI) are combined
with other code that they need to work with (or that they may be
dependent upon) to produce artifacts. The management of these is
worth exploring further.

Artifacts
An artifact is an item that is either a deliverable (something directly
used by the final product) or included in a deliverable. For example,
you might have an executable file created by compiling source that
links in several other libraries. Or you might have a compressed file
such as a WAR or ZIP file that contains another set of files within it.

The delivery pipeline is made up of stages connected in a sequence.
Each stage in turn can be made up of smaller jobs with specialized
tasks. For example, what’s typically referred to as the commit stage
usually consists of jobs to compile the code, run the unit tests, do
integrated testing, gather metrics, and publish artifacts. Then there

6 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

is an automated handoff to an acceptance stage in which artifacts are
retrieved and functional testing and verification are done.

Versioning
Regardless of an artifact’s type, as it proceeds throughout the pipe‐
line, it should be versioned via a process like Semantic Versioning.
Although deployment technology has made overall product version‐
ing less of a concern to users (think app updates on your phone), for
developers, testers, and some automated processes, it isn’t always
desirable to update to the latest versions right away. Operations such
as testing and debugging may require stable versions of artifacts that
don’t change every time the pipeline runs. And to track down issues
completely, the versioning of the artifact should be able to be traced
back to the exact set of source code that was used to produce it.

Versioned artifacts can be managed via an artifact repository tool
such as Artifactory. This kind of tool works like a source manage‐
ment system for artifacts, allowing multiple versions to be stored
and retrieved using different repositories. In some cases, these repo‐
sitories can serve as a dev/test/prod (development quality/testing
quality/production quality) organizational structure to distinguish
multiple levels of releases that are in progress.

Promotion between levels and/or progress through the delivery
pipeline is gated by testing. If incorrect versions of artifacts are
pulled in or functionality is broken, the automated testing in the
pipeline should detect this and raise an alert. Testing in the pipeline
like this is referred to as Continuous Testing.

Continuous Testing
Continuous Testing refers to the practice of running automated tests
or other types of analysis, of broadening scope as code goes through
the CD pipeline. There are various forms of testing that can and
should occur. These include the following:

• Unit testing is typically integrated with the build processes as
part of the CI stage and focused on testing code in isolation
from other code interacting with it.

• Integration testing validates that groups of components and
services all work together.

Continuous Delivery | 7

https://semver.org
https://www.jfrog.com/artifactory

• Functional testing validates that the result of executing func‐
tions in the product is as expected.

• Acceptance testing measures some characteristic of the system
against acceptable criteria. Examples include performance, scal‐
ability, stress, and capacity.

• Coding metrics and analysis are not types of validation in the
same way as pass/fail testing. But they can fit in the category of
Continuous Testing because they assess the quality of code and
testing. And they can be used to gate (block/pass) code at vari‐
ous points in the pipeline. Some quick examples in this category
for checking metrics and analysis include:
— Analyzing the amount of code covered by test cases. This

metric is called code coverage and can be measured by tools
(such as JaCoCo for Java code).

— Counting lines of code, measuring complexity, and compar‐
ing coding structure and style against known best patterns
can be done by tools such as SonarQube. Tools like this run
checks, measure results against desired thresholds, block/
allow further pipeline processing, and provide integrated
reporting on the results.

All of these types of testing may not be present in an automated
pipeline, and the lines between some of the different types can be
blurry. But the goal of Continuous Testing in a delivery pipeline is
always the same: to prove by successive levels of testing/analysis that
the code is of sufficient quality to be used in the release that’s in
progress.

Continuous Deployment
Continuous Deployment refers to being able to take a release of
code that has come out of the delivery pipeline and automatically
make it available for end users. (A pipeline that includes this is usu‐
ally called a deployment pipeline.) Depending on the way the code is
intended to be “installed” by users, deployment may mean automati‐
cally deploying in a cloud, making an update available, updating a
website, or simply updating the list of available releases.

As noted earlier, just because Continuous Deployment can be done
doesn’t mean that every set of deliverables coming out of a pipeline
is always deployed or that new functionality is turned on. It means

8 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

https://www.sonarqube.org

that, via the pipeline, every set of deliverables is proven to be
deployable through mechanisms such as Continuous Testing.

Having to roll back or undo a deployment to all users can be a costly
situation (both technically and in the users’ perception). So, whether
or not a release from a pipeline run is deployed may be gated by
human decisions. These can be based on various methods employed
to “try out” a release before fully deploying it.

Numerous techniques have been developed to allow trying out
deployments of new functionality and easily undoing them if issues
are found. These are discussed in the following sections.

Blue/Green Testing and Deployments
In this approach to deploying software, two identical hosting envi‐
ronments are maintained—a blue one and a green one. (The colors
are not significant and only serve as identifiers.) At any given point,
one of these is the production deployment (released to customers)
and the other is the candidate deployment (being prepped for
release).

In front of these hosting environments is a router or other system
that serves as the customer “gateway” to the product or application.
By pointing the router to the desired blue or green instance, cus‐
tomer traffic can be directed to the desired deployment. In this way,
swapping out which deployment instance is pointed to (blue or
green) is quick, easy, and transparent to the user.

When a new release is ready for testing, it can be deployed to the
candidate environment. After it’s been tested and approved, the
router can be changed to point the incoming production traffic to it
(so it becomes the new production site). Now the hosting environ‐
ment that was production is available for the next candidate.

Likewise, if a problem is found with the latest deployment and the
previous production instance is still in place in the other environ‐
ment, a simple change can point the customer traffic back to the
previous instance. This action effectively takes the instance with the
problem “offline” and rolls back to the previous version. The new
deployment with the problem can then be fixed in the other area.

Continuous Deployment | 9

Canary Testing/Deployment
In some cases, swapping out the entire deployment via a blue/green
environment may not be workable or desired. Another approach is
known as canary testing/deployment/release. In this model, a por‐
tion of incoming traffic is rerouted to new pieces of the product. For
example, a new version of a search service in a product may be
deployed alongside the current production one. Then, a small repre‐
sentative sample (say 10%) of search queries may be routed to the
new version to test it out in a production environment.

If the new service handles the limited traffic with no problems, then
more traffic may be routed to it over time. If no problems arise, then
gradually, the amount of traffic routed to the new service can be
increased until 100% of the traffic is going to it. This effectively
“retires” the previous version of the service and puts the new version
into effect for all customers.

Feature Toggles
For new functionality that may need to be easily backed out, in case
a problem is found, developers can add a feature toggle (aka feature
flag). A feature toggle allows code to be present in the product but
not active until some external process signals it to be active. A simi‐
lar process could also signal it to go inactive again.

One example is a software if-then switch in the code that only acti‐
vates the code if a data value is set. This data value can be set in a
globally accessible location that the deployed application checks to
see whether it should execute the new code. If the data value is set, it
executes the code; if not, it doesn’t.

If active at release, this gives developers a remote “kill switch” to
turn off the new functionality if a problem is found after deploy‐
ment to production.

Dark Launch
In this approach, code is incrementally tested/deployed into produc‐
tion, but changes are not made visible to users (thus the “dark”
name). For example, in the production release, some portion of web
queries might be redirected to a service that queries a new data
source. Tracking information can be collected by development for

10 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

analysis—without exposing to users any information about the
interface, transaction, or results.

The idea here is to get real information on how a candidate change
would perform under a production load without impacting users or
changing their experience. Over time, more load can be redirected
until either a problem is found or the new functionality is deemed
ready for all to use. Feature toggles can be used to handle the
mechanics of dark launches.

Techniques such as the ones in this section are a key aspect of the
continuous paradigm. But to get the complete set of benefits, they
must be paired with team dynamics that support them across the
organization.

DevOps: Bridging the Gap Between Teams
Historically, dev teams created products but did not install/deploy
them in a customer-like way. The set of install/deploy tasks (as well
as other support tasks) were left to ops teams to sort out late in the
cycle. This often resulted in confusion and problems. The ops team
was brought into the loop late in the cycle and had a short time
frame to make what it was given work for customer environments.
Dev teams were often left in a bad position as well, because they had
not sufficiently tested the product’s install/deploy functionality. So
they could be surprised by problems that emerged during that
process.

This situation often led to a serious disconnect and lack of coopera‐
tion between development and operations teams. DevOps is a set of
ideas and recommended practices around making it easier for devel‐
opment (dev) and operations (ops) teams to work together on
developing and releasing software, from the start of the cycle
through the end.

The Continuous Delivery pipeline is an implementation of several
DevOps ideals. The later stages of a product, such as packaging and
deployment, can always be done on each run of the pipeline rather
than waiting for a specific point in the product development cycle.
And both dev and ops staff can clearly see when things work and
when they don’t, from development to deployment. For a run of the
pipeline to be successful, it must execute not only the processes

DevOps: Bridging the Gap Between Teams | 11

associated with development, but also the ones associated with
operations.

Carried to the next level, DevOps suggests that even the infrastruc‐
ture that implements the pipeline be treated like code. That is, it
should be automatically provisioned, trackable, and easy to change,
and should spawn a new run of the pipeline if it changes. This can
be done by implementing the approach of infrastructure as code.

Infrastructure as Code
In this approach, configuration and setup of the tools used in the
pipeline, as well as the pipeline itself, are automated and described
in files that can be stored in source control. A change to any of these
files drives a reconfiguration or update of the tools used in the pipe‐
line. The same change also triggers a new run of the pipeline, just as
a source code change for the product code would.

In short, this implements CI not just for source code, but also for
tools, the pipeline itself, and even configuration and testing data—if
carried to its ideal. Tools that can help with this include common
workflow tools such as Jenkins.

Today, thanks to advances in virtualizing systems and encapsulating
applications and their runtime environments in containers, this
ideal can be achieved.

Continuous Integration and Continuous
Delivery in the World of Containers
In the not too distant past, individual hardware systems used in
pipelines were configured with software (operating systems, applica‐
tions, development tools, etc.) one at a time. At the extreme, each
system could be a custom, handcrafted setup. This meant that when
a system had problems or needed to be updated, that was often a
custom task. This kind of approach goes against the fundamental
Continuous Delivery and DevOps ideals of having easily reproduci‐
ble and trackable environments.

Over the years, applications have been developed to standardize the
provisioning (installing and configuring) of systems. Virtual
machines (VMs) were developed as programs emulating computers
running on top of other computers. These VMs require a

12 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

https://www.jenkins-ci.org
https://oreil.ly/euCZr
https://oreil.ly/euCZr

supervisory program to run them on the underlying host system.
And they require their own copy of the operating system (OS) to
run.

Next came containers. Containers, while similar in concept to VMs,
work differently. Instead of requiring a separate program and a copy
of an OS to run, they simply use some existing OS constructs to
carve out isolated space in the operating system. Thus, they behave
similarly to a VM to provide the isolation but don’t require the
overhead.

Side note: many products these days are deployed in
containers. In such pipelines where containers are the
intended delivery mechanisms, the artifacts created,
managed, versioned, tested, etc. for eventual delivery/
deployment may be containers themselves instead of
the traditional binary modules we think of.

Because VMs and containers are created from stored definitions,
they can be destroyed and re-created easily with no impact to the
host systems where they are running. This allows the use of a re-
creatable system to run pipelines on. Also, for containers, we can
track changes to the definition file they are built from—just as we
would for source code. The most common kind of definition file is a
Dockerfile, used by a common container management application
called Docker, to create an “image” that can then be launched as a
container.

Thus, if we run into a problem (especially in a container), it may be
easier and quicker to just destroy and re-create the container instead
of trying to debug and make a fix to the existing one. As well, we
can store the definition files (such as the Dockerfile) in source con‐
trol and have them monitored by CI. If they change, a new image
can be created based on the file and a new container can be created
easily from the new image.

With containers, we can have the entire runtime environment and
tooling for a process in our pipeline encapsulated. When we need
that part of the pipeline to run, the orchestration process (such as
Jenkins) gets the Dockerfile (or an existing image based on it). It
then spins up a container to do the processing. When that part of
the pipeline processing is done, the container can be deleted to save
resources. But like managing multiple machines, managing multiple

Continuous Integration and Continuous Delivery in the World of Containers | 13

https://docker.com/resources/what-container

containers for a group of processes can be challenging. That’s where
a tool called Kubernetes and its “cluster management” technology
can help.

Kubernetes
Kubernetes is designed to automatically deploy, manage, and keep
running large numbers of containers, and their workloads, on sets of
machines working together as a cluster. You can think of Kubernetes
as a data center for containers. Based on specifications provided to it
by users, it ensures that a certain scale of containers are spun up and
kept running. If something fails, it can start another instance. If
demand increases, it can add more instances. If demand decreases, it
can remove instances. It can provide virtual IP connections to pools
of containerized workloads to ensure that, if one goes down, users
are still connected. In short, it functions like a data center would for
actual real computers, making sure there is availability, reliability,
scalability, and consistency for large numbers of containers and their
workloads. This all lends itself well to cloud environments.

Kubernetes is well suited for pipelines and CI/Continuous Delivery
use cases. This kind of automatic, unattended management for
applications is exactly what’s needed in cloud environments. When
applications are running in the cloud, we don’t want to have to be
manually monitoring, scaling, or restarting them. So it is becoming
more common to manage and leverage cloud environments using
applications like Kubernetes. In fact, every cloud provider has some
implementation of a Kubernetes service that you can ask for.

A key aspect of leveraging cloud environments is cost. For any par‐
ticular kind of processing in the pipeline, we can spin up and man‐
age the workload in containers and delete them when done, thus
limiting the use of resources and saving money. Also, companies do
not have to provide and support their own resources for pipelines.
They can farm that responsibility out to the cloud, using containers
and Kubernetes to manage the processes for them once they are
set up.

There can still be nontrivial work to set up pipelines that use con‐
tainers and Kubernetes with the best practices of CI/Continuous
Delivery and DevOps. But there are applications and tools that can
help with this. One of the newest ones is Jenkins X, a way to set up
and run automated, cloud-ready pipelines with a few basic steps.

14 | Continuous Integration vs. Continuous Delivery vs. Continuous Deployment

https://kubernetes.io/index.html
https://jenkins-x.io/index.html

Conclusion: Continuous Value
As you can see, Continuous Integration, Continuous Delivery, and
Continuous Deployment form a powerful set of disciplines, best
practices, and technologies for transforming changes from source to
production quickly and reliably. The end result is high quality and is
easily reproducible. This process not only benefits the customer, but
also greatly simplifies the worlds of development, testing, and
deployment teams. It lets the teams work together in a common
environment from start to finish, helping to realize one of the core
goals of the DevOps movement.

To get these benefits, Continuous Delivery pipelines (and related
processes) can be created and run in many different forms. Adding
in containers, and managing those containers in Kubernetes clus‐
ters, takes the benefits to another level—automating the setup and
management of the pipeline and its processes. This reduces the need
for custom hardware and support. It also allows for true DevOps
infrastructure-as-code implementations.

Leveraging all of these continuous technologies, virtualization and
containerization techniques, and DevOps practices can provide fast,
disciplined, reproducible, easily managed, and cost-effective pipe‐
lines. Effectively implementing these will allow you and your orga‐
nization to not have to continuously focus on your infrastructure.
Instead, you can focus continuously on the most important goal—
designing, implementing, and delivering quality software efficiently
and reliably to your customers.

Conclusion: Continuous Value | 15

About the Author
Brent Laster is a global trainer, author, and speaker on open source
technologies, as well as an R&D director at a top technology com‐
pany. He has been involved in the software industry for more than
25 years, holding various technical and management positions.

Brent has always tried to make time to learn and develop both tech‐
nical and leadership skills and share them with others. He believes
that regardless of the topic or technology, there’s no substitute for
the excitement and sense of potential that come from providing oth‐
ers with the knowledge they need to accomplish their goals.

	LaunchDarkly
	Copyright
	Table of Contents
	Chapter 1. Continuous Integration vs. Continuous Delivery vs. Continuous Deployment
	Defining “Continuous”
	Continuous Integration
	Unit Tests
	CI Tools
	Prechecks

	Continuous Delivery
	Artifacts
	Versioning
	Continuous Testing

	Continuous Deployment
	Blue/Green Testing and Deployments
	Canary Testing/Deployment
	Feature Toggles
	Dark Launch

	DevOps: Bridging the Gap Between Teams
	Infrastructure as Code

	Continuous Integration and Continuous Delivery in the World of Containers
	Kubernetes
	Conclusion: Continuous Value

	About the Author

