
7 best practices for short-
term and permanent flags
Tips and tricks, definitions, use cases, and more
to improve your feature management workflow

Contents

Introduction

Short-Term Flags

Permanent Flags

Best practices for all feature flags

Best practices for permanent feature flags

Best practices for short-term feature flags

1 best practice for leveraging best practices

02

03

04

05

09

10

12

2L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Introduction

Feature flags, sometimes called feature toggles, are standard practice for many software

development teams. As the top feature management platform, we’re often asked for advice on

feature flag best practices.

And what are those best practices? Well, it depends on

Whether the flag is a short-term or permanent flag. The purpose of the flag.

Your specific business needs. What works for one company may not work for others.

In this ebook, you’ll read about the nuances of feature flagging best practices, so you can avoid

technical debt and other common troubles and use feature flags to your benefit.

First, you need to determine whether a flag will be a short-term or permanent flag, as that will

influence future decisions and best practices.

3L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Release

Slowly exposing a feature to new users—moving from internal to beta and/or canary

users until 100% of users receive the feature. When you reach 100%, remove the flag

(unless it’s needed as a circuit-breaker as described below).

Segment your population to determine a preference for one option over another. Once

testing ends, remove the flag, and 100% of users should receive the preferred variation.

Operational interaction testing

When rolling out a new microservice, infrastructure component, or third-party tag, a flag

can be used to determine the impact on systems. If the CPU spikes or there is a memory

leak, or unexpected errors occur, disable the new element while further troubleshooting

takes place.

Short-term flags

A short-term flag has a limited lifespan, and you generally remove the flag once it has fulfilled

its business purpose. Thinking of feature flags, most people think of short-term flags. Types of

short-term flags include:

4L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Maybe you’re thinking that a release flag sounds a lot like an operational interaction

testing flag. They are similar, but the primary difference is the controller. An operational

interaction flag is controlled by the ops team to protect the systems, whereas the release

flag is controlled by the product or business owner and controls how user adoption

progresses.

Permanent flags

A permanent flag is designed to provide control for an extended time after the release of a given

feature. In some cases, the flag will be in existence for the life of a feature.

Circuit breakers/Load shedding

Having the ability to quickly turn a feature off or terminate a connection when problems

arise prevents problems from impacting all users. These flags are often activated

based on an event. For example, a monitoring tool generates an alert when orders fail to

complete. When the alert is triggered, a flag is toggled, setting the site to “read-only.”

White labeling

Configuring the look and feel of an application for each client for a white-labeled solution.

1

2

5L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Make flag planning a part of feature design

Feature flags shouldn’t be an afterthought. If you think about feature flags during the

design process, you will be setting yourself up for success. Once you decide whether

the flag will be a short-term or permanent flag, this decision will then impact other areas

such as a naming convention, configuration settings, review and removal processes, and

access control and safety checks. We suggest proper planning upfront for all flags.

Standardize naming

You may have a style guide outlining conventions on how to write code for your

application; this could include things like when and where to use CamelCase or

the proper use of indentation. These style conventions make it easier to read and

understand the code.

Before creating your first flag, come up with a naming convention to be used. Our first

Best practices for all feature flags

Whether you have a permanent or short-term flag, consider these best practices. Please

note: These are recommendations that we follow and have collected from other customers.

Recommendations may change over time. As such, feel free to modify and alter based on your

specific needs. What works well for one company or team may not work well for another team.

6L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

recommendation is for verbose flag names. Don’t try to be brief. Verbose flag names can

help others understand what the flag does.

Feature Flags | This_is_a_very_long_flag_name_created_by_me_for_a_blog

This_is_a_very_long_flag_name_created_by_me_for_a_blog

This_is_a_very_long_flag_name_created_by_me_for_a_blog

Things to consider when writing the style guide or naming convention:

• Be descriptive about the flag’s behavior.

• Include a prefix with a project name or team name.

• Indicate whether the flag is temporary or permanent.

• Include a creation date for the flag. (This will be helpful when cleaning up flags,

more on this below).

Whether or not to use flag in the name: When using a service like LaunchDarkly, using

flag in the name is redundant. If you’re using a home-grown solution, using flag in the

name may help clarify the purpose of the code.

https://docs.launchdarkly.com/guides/best-practices/creating-flags
https://docs.launchdarkly.com/guides/best-practices/creating-flags

3

7L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

For example, suppose you are creating a flag to progressively roll out and test a new

chatbox widget of your UI. This will be a short-term flag. Without a naming convention in

place, you may end up with a flag called “brand-new-flag” or “new-UI-widget.”

These names don’t tell us a whole lot about the flag. But with a standard naming

convention in place that addresses all of the above, you can create a more descriptive

flag name like “aTeam-chatbox-widget-temp-030619.” We know from the name that this

is a temporary flag for a chatbox widget created by the “a team” on June 3—much better!

Minimize the reach of a flag

The focus of a flag should be small. Having a flag that controls more than one feature

action at a time can be confusing and will make troubleshooting issues harder. Think

about the smallest unit of logic needed for the most responsive flag. If there are multiple

parts to a feature that have to work together, we suggest creating a master flag as a

dependency.

For example, say you’re launching a new dashboard in your application. The dashboard

has three widgets. You should create a total of four flags: one flag for each widget with

a dependency on a fourth flag for the main dashboard. With this scenario, if one widget

causes problems, the dashboard with two widgets can still be served.

5

4

8L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Review use at regular intervals

Whether creating a short-term or permanent flag, you need to review flag use at regular

intervals. The frequency at which you review the flags may vary based on business

requirements and the type of flag. To avoid accrual of technical debt, check both

permanent and short-term flags at a regular cadence.

For short-term flags, look to see if the flag has rolled out to 100% of users or if a flag is

served to no users. For permanent flags, examine whether the flag is still needed (was a

feature once part of a premium bundle but is now available for all users?) We will cover

specific criteria related to removing short-term flags below.

Establish access control and safety checks

If you have regularly scheduled flag clean-up events, you may worry about the

accidental removal of permanent flags. Minimize this risk by implementing access

control and safety checks.

Within LaunchDarkly, a flag cannot be deleted without confirmation, but that is a partial

solution. There are two additional ways to implement:

1. Use tags and custom roles to assign permissions to flags within LaunchDarkly
quickly.

2. Set role-based access control (RBAC) to specify who can delete flags in a
given environment.

https://launchdarkly.com/blog/launched-put-a-tag-on-it/
https://docs.launchdarkly.com/home/members/custom-roles

1

2

9L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Create a process for removing flags before you create one

Coding a flag is a two-part process. The act of removing a flag should not be a separate

process from the act of creating a flag. As mentioned above, you should plan for flags

during the feature design process. This includes the removal of short-term flags. An

easy way to handle the removal process is to write a pull request to remove the flag at

the time you create it.

Schedule a GitHub reminder for after the feature is deployed to review and determine if

the PR to remove the flag should be committed.

Conduct regular clean-up and review cycles

Avoiding and eliminating technical debt is necessary. Here are some ways to schedule

flag clean-up.

• Schedule time at the end of every sprint to review existing flags.

• Perform a clean-up/refactoring sprint at a regular cadence (quarterly, semi-

annually, whatever works for your business) to pull out old flags & tags.

• Make it a competition. Hold a “Capture the Flag” day. The individual or team

that removes the most flags wins.

Best practices for short-term feature flags

1 0L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Within LaunchDarkly, we make it easier to identify flags for removal.

You can:

• Filter tags by creating a date to view the oldest flags

• View which variations of a flag were recently served. Are 100% of users

receiving the same variation?

• Filter on the last evaluation date of a flag

Once you have identified a flag for removal, use code references to find all the instances

of that flag in your codebase.

If you are not using LaunchDarkly, a consistent naming strategy can help you prep the

code for instances of flags.

1 1L A U N C H D A R K LY | 7 B E S T P R A C T I C E S F O R S H O R T-T E R M A N D P E R M A N E N T F L A G S

Lastly? It’s always a best practice to modify any advice for your team. Recommendations may

change over time, and what works well for one company or team may not work well for another.

That said, we hope you’ve found these tips helpful and if you’re interested in staying updated on

the latest best practice, check out the LaunchDarkly blog.

If you’re interested in taking the plunge with LaunchDarkly, see why consulting firm Forrester

said you’ll get a 245% ROI from our platform in their report, “The Total Economic Impact of

LaunchDarkly,” or go here to view survey results and learn more about the ROI LaunchDarkly has

provided our users.

1 best practice for leveraging best practices

https://learn.launchdarkly.com/total-economic-impact/
https://learn.launchdarkly.com/total-economic-impact/
http://https://launchdarkly.com/roi-feature-management/
http://https://launchdarkly.com/roi-feature-management/

Empowering all
teams to deliver and
control their software.
launchdarkly.com

sales@launchdarkly.com

https://launchdarkly.com/
mailto:sales%40launchdarkly.com?subject=Tell%20me%20more%20about%20LaunchDarkly

