LaunchDarkly %

How Product and
Engineering Teams
Build Better Features
with Trusted Data

p Test running
L

Table of Contents

01

02

03

04

05

06

Turn your releases into learning opportunities

A statistically rigorous toolkit—without the complexity

Experimentation results: turning data into action

Attach an experiment to any feature, model, or Al configuration

Leveraging your data for deeper insights with Warehouse-
native experimentation and data export

From instinct to insight-driven development

1l

18

23

27

Turn your releases into
learning opportunities

Shipping software isn’t just about writing code and pushing it live. It’s about
creating better user experiences and business impact with every release.
Every new feature release comes with a question:

-

Will this make things better for our users, or
are we about to introduce a problem we didn’t
see coming?

Product and engineering teams have long relied on instinct, customer
feedback, and best practices to guide these decisions. But gut feelings
aren’t data; even the most experienced teams can get it wrong.

Experimentation changes this. Instead of guessing how a release will
perform, teams can test, measure, and know with experimentation. By
running controlled experiments, they can see how a change impacts user
behavior, business metrics, and system performance before committing
to a full rollout.

Experimentation turns a release cycle into a continuous learning cycle.

What experimentation is—
and what it’s not

At its core, experimentation involves:
& Randomly assigning users to different variations (A/B testing).
& Keep assignments stable so that results are easy to interpret.

& Measuring outcomes with statistical rigor to ensure results are
trustworthy.

& Drawing data-driven conclusions to inform future product decisions.

With these principles, teams don’t just react to data—they make informed,
confident decisions. They can answer questions like:

Does this feature improve engagement, or is it just adding friction?

Will this checkout flow increase conversions, or do users abandon more
often?

Are these Al-driven recommendations helping customers, or are they
just noise?

Rather than rolling out features and hoping they work, experimentation proves
what works and what doesn’t, before changes are permanent. It can reveal
what’s really happening when you introduce a change; not just correlation, but
causation.

EXPERIMENTATION PLAYBOOK

Feature flags and percentage
rollouts: risk reduction, not
experimentation

Feature flags are a must for modern software development. Turning on
features for specific targeted audiences rather than “all-or-nothing” releases
significantly reduces risk.

200 milliseconds o

— that’s all it takes to turn off a broken feature and avoid
complicated rollback plans and all-night redeploys.

They let teams gradually release new functionality, limiting the area of
impact if something goes wrong. Instead of launching to everyone at once,
teams can roll out a feature incrementally, starting with internal users and
then a small percentage of customers, and increasing exposure over time.

But feature flags and percentage rollouts alone aren’t experiments. They
help teams manage risk but don’t stabilize audience assignments or provide
statistically valid comparisons. They can catch a feature causing
performance issues before it reaches your entire user base, but it won't tell
you why. And if conversion rates drop, there’s no guarantee the new feature
was responsible—it could be a coincidence.

Without experimentation, teams risk making decisions based on incomplete

data. They might roll back a feature that was an improvement or, worse, push
something live that causes unseen problems down the line.

EXPERIMENTATION PLAYBOOK

Experimentation should add value,
not disrupt engineering workflows

Engineers often view experimentation as an add-on rather than a core part of
the development process. They’re typically focused on delivering code that
functions without errors. However, that code is tied to a business goal: driving
new customer behavior, helping customers solve problems, or driving other
important business outcomes.

When it’s time to bring a feature to market, shouldn’t engineering be involved in
the conversation about measuring its impact? In practice, engineers are often
left out of the conversation, which has downstream impacts.

Separate tools = more headaches, slow

One factor that worsens the situation is that the tooling engineers use to
release features to market differs from the tooling used to measure that
feature’s impact.

Traditional experimentation platforms treat testing as an isolated process,
disconnected from how engineers build and ship software. This disconnect
introduces several challenges:

« Context switching

Jumping between different tools interrupts engineering focus and slows
development.

& Manual configuration

Experiment enablement often requires extra steps outside standard
engineering workflows. Differences between release and experiment
management systems usually cause release challenges.

EXPERIMENTATION PLAYBOOK

</> Rewriting code

Engineers often need to refactor or duplicate code to make a feature
testable. Code written by experimentation tools does not follow company
standards or understand and work with the entire codebase.

& Delays in validation

Identifying data discrepancies between different systems can take
significant time and only explains differences in how the tools work, not
information about features released to the market.

As a result, many teams deprioritize experimentation due to the overhead,
relying instead on instinct and anecdotal evidence, undermining the benefits of
a data-driven approach.

gTA S H n Read: Full Stash case study S

Stash is used by over 4 million customers across the US. As a digital financial
services company, Stash constantly seeks new ways to innovate and deliver
unmatched customer experiences.

As part of this effort, Stash is building a culture of experimentation across the
entire organization. For example, developers on the customer loyalty engineering
team frequently run tests to measure the effectiveness of customer programs
such as referral incentives, Stock-Back® Rewards, and more.

As the company continues to experiment across its platform, it has also
instituted modernized software development practices. The software
organization has pursued changes aimed at helping them release new
functionality early and continuously, in keeping with Agile principles.

While Stash has made great strides in its experimentation and software
delivery, LaunchDarkly helped Stash take things a step further by infusing
experimentation across its entire stack.

https://launchdarkly.com/case-studies/stash/

Building experimentation into feature
delivery

Rather than treating experimentation as a separate workflow, it should be a
natural extension of how teams build, ship, and validate features. Teams can
help eliminate friction and streamline testing by integrating experimentation
directly into feature delivery.

How LaunchDarkly enables experimentation

LaunchDarkly removes workflow disruptions by embedding experimentation
directly into the feature management process. This means engineers can:

(« Attach experiments to any feature, measuring metrics tied directly to
the flags controlling a release.

& Run controlled tests without slowing down deployments, helping to
ensure experimentation enhances rather than hinders development
velocity.

& Ship and iterate in real time, routing traffic to capitalize on the gains of a
winning experiment immediately.

L« Create stable, statistically valid assignments that can prevent bias and
provide reliable insights.

By embedding experimentation within the development lifecycle,
LaunchDarkly helps teams validate their hypotheses, mitigate risk, and
optimize experiences, without sacrificing speed. Experimentation should be
an enabler, not a blocker, for faster feature delivery.

“LaunchDarkly has played a big part in helping us build a culture
at Stash, where we experiment with everything. It has also enabled
us to release new features way faster than before. The fact that we
can manage software releases and support experimentation in the
same platform is remarkable.”

Kahne Raja, Engineering Manager, Stash STASH

Experiment types

Experimentation isn’t one-size-fits-all. Different experiments answer different
questions, and teams need the right approach for the right situation. In this
ebook, we'll cover:

@ Bayesian and Frequentist approaches

Understanding different statistical methods and when to use them.

y A/Btesting

Direct comparisons between two variations to see which performs better.

Funnel optimization

Identifying drop-off points in a user journey and testing ways to improve
conversion rates.

Warehouse-native experimentation

I((

Measuring with trusted business data to enhance and deepen
experiment results.

Each approach serves a different purpose, but they all share the same goal:
helping teams make better product decisions based on real-world data.

A statistically rigorous
toolkit—without the
complexity

Experiments shouldn’t require a statistics degree or a six-week setup cycle.
Yet, many teams never get their experimentation programs off the ground
because they feel too complex, too risky, or too disconnected from their
daily work.

In this chapter, we’ll explain what makes an experiment trustworthy and
introduce the core principles LaunchDarkly builds into its Experimentation
product so teams can move quickly and confidently.

Why do teams struggle to trust
experiment results?

One of the biggest blockers to acting on experimental data is simple: doubt.
What if the result is just random noise? What if our users weren’'t assigned
consistently? What if we stopped the test too soon?

This hesitation is often justified but doesn’t have to be permanent.
LaunchDarkly can help teams reduce these sources of uncertainty by making
statistical rigor the default, not a custom project.

What makes an experiment reliable?

A trustworthy experiment starts with the proper structure. It should be stable,
in that users should be randomly and consistently assigned to a variation,
with no mid-test switching. Conditions should be kept equal between groups,
with only the tested variable changing. Teams should log every interaction
they intend to measure. And lastly, experiments should have clear success
metrics, with outcomes defined ahead of time.

Teams don’t need to reinvent the wheel; LaunchDarkly bakes these
fundamentals into the experimentation workflow.

What a reliable experiment looks like

Your product team wants to increase sign-ups by reducing friction on your
onboarding page. You have a hypothesis: "Reducing the number of form
fields will increase completion rates."

You spin up a flag to control two variations: one with the existing form and
one with fewer required fields. Your metric? Completion rate for first-time
visitors. Users are randomly assigned to a variation, and their experience
stays consistent across visits. As data rolls in, you monitor performance
using the LaunchDarkly results page.

A healthy experiment involves a straightforward
question, a structured comparison, and built-in tools that
help your team focus on learning, not logi:

EXPERIMENTATION PLAYBOOK

Understanding confidence
without the confusion

If you’ve ever debated when to stop a test, you're not alone.

“Can’t we just release it now?”
“How long do we need to keep testing?”

“Do we need more users in the test?”

These are natural questions, and the answers depend on how confident you

need to be. LaunchDarkly supports both Bayesian and Frequentist

methodologies. Each offers different trade-offs around speed and certainty.

Use Frequentist methods when you need fixed-timeframe decision points and

hard thresholds for rollout. Use Bayesian models when making decisions

iteratively, watching probabilities update as new data comes in.

Common mistakes (and how to avoid them)

|

Stopping too early

A promising trend doesn’t always mean a reliable result. Let the test run
long enough for you to achieve confidence.

Inconsistent assignment

Your data won't reflect reality if users see different variations on different visits.

Unclear metrics

You can’t learn from an experiment if you don’t define what success looks like.

LaunchDarkly builds guardrails into every step of the process so these pitfalls

don’t become blockers.

EXPERIMENTATION PLAYBOOK

Experimentation results:
turning data into action

Many teams invest time and effort into setting up experiments, but they hit a
wall when the results come in. Instead of delivering clear takeaways,
experiments often lead to analysis paralysis—a situation where data is
abundant, but the steps to follow are unclear. This can happen because:

[! Data is scattered

Experimentation results live in multiple tools, forcing teams to piece
together insights from disparate sources.

[! Teams lack confidence in results

Without clear statistical interpretation, teams hesitate to act, fearing
they might make the wrong call.

! No structured decision-making process

When it's unclear who makes experiment decisions, findings are
discussed but not implemented.

! Experiments don’t drive immediate action

Even when a winning variant is found, teams often struggle with the
logistics of rolling it out quickly.

The results can include a lack of momentum for product teams, stalled
progress, and wasted opportunities.

Not just data—actionable insights

To break free from analysis paralysis, teams need a direct path from results to
action. That means:

& Centralized results

A single, accessible source of truth that doesn’t require engineers,
product managers, and analysts to hunt for insights.

| v Clear, visual reporting

Data is presented in a way that immediately conveys meaning, not
buried in raw spreadsheets or requiring complex analysis.

& Confidence in the numbers

Statistical rigor should be built in, ensuring results can be trusted
without needing deep statistical expertise.

& Faster iteration

When a test concludes, teams should be able to immediately act on the
findings without delays from manual deployment processes.

How LaunchDarkly delivers
experimentation insights

l Clear, centralized results; no more hunting for data

Many teams struggle with fragmented data, where experiment results
are spread across analytics dashboards, Bl tools, and engineering logs.
LaunchDarkly solves this by keeping all experiment results in one place.

How it works:

& A unified results page displays exposures, conversions, and
statistical confidence in an easy-to-understand format.

& Experiment history tracking allows teams to see how previous
tests performed, preventing redundant experimentation.

& Configurable data sources help ensure you can efficiently
source your data via streaming or warehouse. LaunchDarkly
can meet your analysis needs where they are.

Experiments / Homepage sign-up button color @ Production

Design Results lterations

3 Running Iteration 2 Started on Thu, Jun 12 2025 at 9:03 AM

Results Confidence nterval 95% ~ SRM None detected CUPED Enabled
Summary Exposures
Hypothesis 20,204 user contextsin the past 45 days

We believe that changing the homepage sign up button to purple from blue will increase sign ups.

Key takeaways

o Based on the primary metric Sign-up button clicked, & Blue is the winning variation.

Variation Percentage
© Blue Control 50%
Learn about analyzing results 7

@ Purple 50%
Allmetrics v Allattributes v Allvariations v+ Probability density Expand graphs -+
Primary met
Variation Graph p-Value Conversion rate Relative difference Conversions Exposures
Sign-up button clicked CUPED

Control 2.44% Control 346.50 10,101

lue Control
@ 8 10.98, 4.40)%

[0.98, 4.40]% [0.98, 4.40]%

Secondary metric
Variation Graph p-Value Mean Relative difference Total value Exposures

LCP main CUPED

Control 2.44% Control 346.50 14,201
& S NS (0.98, 4.401%
& bintia A 0329 2.44% +39.29% 346.50 14,201

EXPERIMENTATION PLAYBOOK

Example

A B2B SaaS company had been relying on a mix of spreadsheets,
analytics dashboards, and Bl reports to track the outcomes of their
experiments. Every time a test concluded, a product manager
would request data from analytics, pull historical metrics from
engineering logs, and wait several days for a data scientist to
validate the findings.

After moving to the LaunchDarkly experimentation platform, that
workflow changed dramatically. With all exposures, conversions,
and confidence levels available on one centralized results page, the
team could review outcomes immediately without waiting for
multiple teams to assemble the puzzle.

During a quarterly planning session, they quickly revisited results
from three past tests using the experiment history view. They
avoided re-running a test they had already tried (and that had
failed) six months earlier. The time saved was equivalent to nearly
two full weeks of work.

Easily analyzed results using visual analysis

Experiment results should be intuitive, not a wall of numbers that a
data science team has to decode. LaunchDarkly presents clear visual
insights so teams can quickly grasp what’s working and what’s not.

How it works:

& Conversion rate comparisons let teams instantly see which
variation performed better.

& Attribute slicing gives teams the tools to analyze results
across important customer segments (that you define) and to
look for opportunities to capture margins.

EXPERIMENTATION PLAYBOOK

& Time-series analysis allows teams to track experiment

performance over time, detecting trends or anomalies.

Latest results Historical results

[-/ Relative difference from Contml] = Conversion rate

1 Step 1: Sign-up button clicked @ Custom:conversion @& 1m ago

v @ Treatment1 v @ Treatment 2
Jul 6, 2024, 7:45 PM PST

R & Purchase made

Variation

4%
3%
2%

1%

@ Treatment 1

O Treatment 2

Jun 15 Jun 22 Jun 29 Julé Jul13

Example

Experiment duration Jun 1- Aug 15 2024 v

Relative difference from Control 95% credible interval =]

+0.76% Lo 142% "

+2.02% [1.09, 1.89)%

Jul 20 Jul 27 Aug 3 Aug 10

A subscription meal delivery service ran experiments on a new homepage

layout intended to boost sign-ups. Initial top-line metrics showed no

significant difference between the two variations, leading the team to assume

the new design was a neutral change.

However, when they used attribute slicing, they uncovered a different story:

the new design actually improved conversion rates by 14% among mobile

users, while desktop users saw a slight drop.

Using the LaunchDarkly time-series view, they also noticed that mobile

conversions spiked during lunch hours—a pattern that hadn’t shown up

in aggregate metrics. This insight helped the team make a targeted
decision: roll out the new layout to mobile only and refine the desktop

version separately.

EXPERIMENTATION PLAYBOOK

k Statistical confidence that removes guesswork

Many teams hesitate to act on experiment results because they lack
confidence in the data, not knowing whether the results are truly
meaningful or just random fluctuations.

How it works:

& LaunchDarkly automatically applies Bayesian or Frequentist
statistical models, eliminating the need for manual
calculations.

(Results include clear probability statements (e.g., "Variant B is
89% likely to outperform variant A"), making decisions simple.

& Teams weigh predicted improvements against expected
losses to make confident decisions.

Example

An online learning platform tested two versions of a course recommendation
engine on its homepage. Variant B, the new algorithm, showed a modest lift in
course clicks—around 3% higher than the control.

The team was ready to declare success. But the LaunchDarkly Bayesian analysis
showed an expected loss of 2.4%, meaning that while Variant B looked better,
there was still a meaningful risk that it could underperform in certain conditions.

Instead of a full rollout, the team ramped up gradually, limiting exposure to 25%
of users while monitoring performance. This allowed them to validate the
improvement without gambling the full user base. Two weeks later, with
additional data, the probability of outperforming control rose to 96%, and the
expected loss dropped below 0.5%. This gave the team the confidence to ship
the complete course.

EXPERIMENTATION PLAYBOOK

k Results shipped in real time

Even when teams trust their experiment results, there’s often a delay
between knowing what works and deploying the winning variant.

How it works:

(Feature flags are integrated directly with experiment results,
allowing teams to ship the winning variant without writing new code.

& If an experiment yields negative results, teams can
immediately revert to the control group, without waiting for a
full release cycle.

Example

A fintech startup was testing a redesigned loan application form aimed at
reducing user drop-off. Midway through the experiment, Variant B showed a
clear lead—users completed applications 22% faster with no drop in
conversion.

Thanks to LaunchDarkly, the product manager didn’t need to schedule a new
deployment or wait for the next sprint. As soon as the team hit statistical
significance, they used the integrated feature flag to ramp Variant B to 100%
in real time, while the engineering team focused on other roadmap work.

Even better: a week later, when customer support flagged an increase in
confusion among one niche user segment, the team simply reverted those
users to control using audience targeting—without touching code or
impacting the rest of the user base.

EXPERIMENTATION PLAYBOOK

Attach an experiment to
any feature, model, or Al
configuration

Experimentation should be integrated into the development lifecycle, not
used as a separate or additional step. Whether testing a Ul change, backend
model, or Al-driven recommendation system, embedding experimentation
directly into rollout processes ensures that every release is an opportunity to
measure impact and improve performance.

With LaunchDarkly, teams can:

& Attach experiments directly to the code's feature flags, ensuring that
every change can be measured.

& Runcontrolled tests at any level, from Ul components to backend logic
to Al-driven personalization.

& [Iterate faster by making real-time data-driven decisions, without
redeploying code.

What is an A/B/n test?

A/B testing is the foundation of most digital experimentation strategies. It
allows teams to compare two versions (or more in A/B/n testing) of a feature
to determine which performs best. By randomly assigning users to different
variations, teams can measure the impact of changes on key performance
indicators such as:

& Engagement

Does the new feature keep users interacting longer?

(. Conversion rates

Does the change lead to more sign-ups, purchases, or other
key actions?

L Revenue impact

Does this pricing experiment affect purchase behavior?

A/B tests provide a controlled and statistically valid
way to evaluate whether a new feature should be fully
deployed or iterated upon.

Creating a feature change experiment in LaunchDarkly >

https://launchdarkly.com/docs/home/experimentation/feature

What is a Funnel Optimization
experiment?

A/B tests help you understand which variation performs better, but funnel
optimization enables you to understand why users aren’t completing the
journey in the first place. These experiments are designed to uncover friction in
multi-step workflows so teams can make precise, meaningful improvements.

Where are users abandoning sign-up forms?
Which step in the checkout flow causes the most drop-offs?

How can we reduce time-to-conversion or increase completion rates?

Funnel experiments break the user journey into discrete stages, allowing
teams to test targeted changes at the points where users get stuck.

Unlike traditional web-based testing tools, LaunchDarkly isn’t limited to
browser interactions. Your funnel steps can span the full stack—from mobile

clients to server-side events—giving you a unified view of user behavior and
conversion paths across platforms.

Running a funnel optimization experiment in LaunchDarkly 9

EXPERIMENTATION PLAYBOOK

https://launchdarkly.com/docs/guides/experimentation/funnel-optimization

Beyond Ul changes: Experimentation
for Al models and configurations

Modern experimentation goes far beyond front-end tweaks. With
LaunchDarkly Al Configs, teams can safely ship, tune, and iterate on the Al
models and settings that power their backend systems, creating safer
deployments without introducing risk.

Here’s how organizations are experimenting at the model and config level to
unlock smarter user experiences and more reliable Al performance.
Recommendation models and ranking algorithms

Scenario: A retail platform wants to improve how products rank in search
results and recommendation carousels.

L Control

<

Uses a rule-based model sorted by popularity and category.

& Variant

Tests a fine-tuned embedding-based model that uses user behavior vectors.

/ Success Metric

Increased add-to-cart rate and time spent browsing.

With Al Configs, the team can toggle between models or configurations and run
controlled experiments in production to see which delivers better engagement.

Prompt and model parameter testing for Al assistants

Scenario: A SaaS company is scaling its Al-powered support chatbot
and wants to fine-tune its tone and escalation behavior.

https://launchdarkly.com/docs/home/ai-configs

Control

A short, functional prompt with a low confidence threshold for escalation.

Variant

A longer prompt with an empathetic tone and a higher confidence
threshold before escalating to human agents.

Success Metric

Higher customer satisfaction and fewer unnecessary escalations.

Al Configs let you iterate on prompts, temperature settings, and fallback logic

in real time—testing changes without retraining models or redeploying

backend code.

Real-time Al Config tuning for risk models

Scenario: A fintech company is updating its fraud detection model and wants

to test new thresholds for flagging suspicious behavior.

&

Version A

Uses conservative thresholds to minimize false negatives.

Version B

Uses aggressive thresholds to reduce false positives.

Success Metric

Balance between fraud prevention and user experience (e.g., fewer
blocked legitimate transactions).

Instead of hardcoding these thresholds, teams using LaunchDarkly can

experiment with different configurations safely in production, using real-world

data to validate their impact.

EXPERIMENTATION PLAYBOOK

LEVERAGING YOUR DATA FOR DEEPER INSIGHTS

Warehouse-native
experimentation and
data export

Many organizations struggle to connect their experimentation results with
core business metrics because data is spread across multiple tools. This
disconnect creates problems such as:

= Data Silos

Experiment results live separately from broader business analytics.

y Inconsistent Metrics

Different tools define metrics differently, leading to confusion.

“ Delayed Decision-Making

Manually merging experiment data with business KPIs slows down
actionable insights.

LaunchDarkly solves these challenges by enabling Warehouse-Native
Experimentation with Snowflake and offering data export experiments for
deeper analysis in external tools.

Warehouse-Native Experimentation with
LaunchDarkly and Snowflake

Warehouse-Native Experimentation integrates LaunchDarkly’s
experimentation data directly into Snowflake’s Al Data Cloud, allowing teams to
analyze experiment results alongside business data in Snowflake. By keeping
all analysis within the data warehouse, teams can use trusted organizational
metrics to measure experiment outcomes and reduce data movement.

S,:o:’s Snowflake native Analysis powered by your Snowflake warehouse O
Leverage your Snowflake warehouse to run experiments with LaunchDarkly.

You must have Data Export and Snowflake Experiment destinations configured in this
environment.

Manage destinations

Example

A subscription-based streaming service wanted to evaluate whether a $2 price
increase on new subscriptions would increase revenue without driving churn.
But like many data-savvy organizations, they already had well-defined metrics
—such as monthly revenue per user and 60-day retention—Iliving in their
Snowflake warehouse.

Rather than re-instrument their app to send new event data into LaunchDarkly,
the team used Warehouse-Native Experimentation to connect LaunchDarkly
directly to those existing metrics. No new pipelines or duplicated tracking; just
analysis run against data that the business already trusted.

As the experiment ran, LaunchDarkly measured revenue impact and retention
automatically using those warehouse-defined KPIs. Within a few weeks, results
showed a 9% boost in revenue, but also a notable drop in retention for certain
user segments. Confident in the results—because they were based on their own
source-of-truth data—the team moved quickly. They rolled back the price
change for most new users while keeping it in place for a high-LTV segment that
showed no negative retention signal.

The team avoided unnecessary engineering work, made a faster decision,
and unlocked a more nuanced pricing strategy by using metrics they’d
already invested in and data that never had to leave their warehouse.

Data export experiments: using external tools for
custom analysis

Unlike standard experiments that require defining metrics in LaunchDarkly,
Data Export Experiments send raw experiment data to external analytics
tools. This enables teams to:

& Analyze results in Bl tools and data warehouses such as Snowflake or BigQuery

& Use custom statistical methods beyond LaunchDarkly built-in
Frequentist and Bayesian models.

& Maintain metric consistency by using existing business definitions.

@ Data Export only Create custom experiment analysis in your warehouse o

Use Data Export only to manage all experiment analysis in your own third-party data tool.
LaunchDarkly manages audience assignments, but does not provide results analysis.

You must have a Data Export destination configured in this environment.

Manage destinations

Example

A B2B SaaS company was rolling out a new in-app automation feature designed
to reduce manual workflows for enterprise admins. The product team believed
this feature would increase long-term customer satisfaction and reduce churn,
but the impact wouldn’t show up in simple conversion metrics alone.

Instead of relying on built-in analysis for short-term engagement, the team set
up the experiment in LaunchDarkly as a data export experiment, streaming
variation assignments and exposure events directly into Snowflake.

https://launchdarkly.com/docs/home/experimentation/export

From there, the data science team combined experiment data with downstream
signals—support ticket volume, usage frequency, renewal status—and fed it
into an existing machine learning churn risk model.

The experiment highlighted a nuanced insight: while the feature had little
impact on daily usage, it significantly reduced churn risk for admins in accounts
with over 50 seats. This information wouldn’t have surfaced in top-level metrics,
but it was critical for retention strategy.

Armed with this evidence, the company fast-tracked full rollout to high-seat
customers and started a follow-up experiment to explore the impact on mid-
sized accounts.

Benefits of Warehouse-Native and data-export
experimentation

Warehouse-Native and data export experimentation with LaunchDarkly can
provide:
(Asingle source of truth

Use existing business data instead of maintaining separate experiment
tracking.

& Greater analytical flexibility

Apply custom statistical models using Bl tools.

 Faster decision-making

Experiment results appear directly in Snowflake, BigQuery, or other
platforms for immediate insights.

(Scalability

Run large-scale experiments without performance impact on
application infrastructure.

EXPERIMENTATION PLAYBOOK

From instinct to insight-
driven development

Experimentation isn’t just a process—it’s a mindset shift. By embedding
experimentation directly into feature delivery, teams can:

[Innovate faster

Reduce guesswork and ship impactful features quickly.

y! Minimize risk

Test changes before full rollout, ensuring a smooth user experience.

Optimize outcomes

W

Continuously refine product strategies based on real-world data.

= Break down silos

Enable collaboration between engineering, product, and data teams.

Why use LaunchDarkly Experimentation?

Many teams struggle with experimentation because traditional platforms
operate in isolation from the software delivery process. LaunchDarkly
embeds experimentation directly into feature flags for easier testing. It
supports everything from simple A/B tests to Al model evaluations and allows
teams to use both Bayesian and Frequentist approaches. It also ensures
stable user assighments, statistical rigor, and real time insights.

Teams can learn iteratively every time they ship a feature. Every release is an
opportunity to:

& Validate assumptions and iterate based on evidence.

& Discover new user behaviors that inform future development.

& Create improvements across all aspects of the business.

The future of software development belongs to teams that learn faster. Are
you ready to start experimenting?

EXPERIMENTATION PLAYBOOK

Next steps

Let’s turn every release into a learning
opportunity. The next breakthrough starts now.

launchdarkly.com | sales@launchdarkly.com

https://launchdarkly.com/services/
https://launchdarkly.com/request-a-demo/
https://launchdarkly.com
https://app.launchdarkly.com/signup

