LaunchDarkly %

10 Critical KPlIs
for Stronger
Software Releases

The best metrics to maximize your
team’s quality and efficiency.

7

=




Table of Contents

The Value of Better KPIs

o1

02

03

04

05

06

o7

08

09

10

Release Frequency

Feature Time-to-Production

Deployment Speed

Release Downtime

Number of Expected Deployments

Number of Rollbacks

Test Speed

Test Coverage

Test Flakiness

Feature Lifespan

Wrapping Up

10

11



INTRODUCTION

The Value of Better KPIs

Key performance indicators, or KPIs, are defined benchmarks to
understand how your organization is performing. At many
companies, KPIs are used by nearly every department, from
human relations to marketing.

In software development, KPIs can take on many familiar and
quantifiable forms, such as the number of monthly active users or
the amount of revenue your app brings in every quarter. KPIs are
important because they help your teams determine how
successful they are at achieving their goals.

In this guide, we’ll suggest the 10 KPIs you can use
to track how well you’re deploying, releasing, and
shipping software. Although these are just our
suggestions, we believe they represent a good
starting point for data collection during an often
overlooked phase of software development. That
said, one size doesn't fit all teams, so you may want
to pick and choose.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES %



O1

Release Frequency

Back in the day, when software was shipped in compact discs (and before
that, floppy disks), the concept of a release was simple. You typically release
one major software update every year or two and then spend the rest of the
time preparing for the next year’s cycle.

Even though almost every app is distributed through the Internet, major
releases continue to be few and far between. Instead, the year is punctuated
by minor and patch releases, which consist of anything from new features to
essential security updates.

Being able to release software quickly and without obstacles is a good
practice. But tracking the frequency of these releases can also set a baseline
gauge for overall productivity.

For example, if you have sprints that last two weeks, you could track how
many of those end with shippable code. This can help you establish a more
appropriate cadence for sprint lengths. It might also help you discover how
your distributed teams are functioning together.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES



02

Feature Time-to- Production

Another metric to capture is the entire life cycle of a feature, from the time a
developer accepts the work to when it appears live in production. Capturing
how long it takes for an idea to become reality can help uncover issues such
as resource misallocation or unrealistically tight deadlines.

If you’re noticing that features are taking longer to complete than expected, it
could mean that the length of your sprints or your completion time estimates
are optimistically unrealistic.

Supercharge Your Release Pipeline

As organizations grow, it’s tempting to stick with the way
things have always been done. And yet, stepping back and
asking questions can yield big results. In this session from
LaunchDarkly’s recent user conference, Galaxy, Caley Brock, a
senior software engineer at VTS, talks about some of the
improvements that changed her team’s process and enabled
faster shipping and more streamlined testing.

Watch now =

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES


https://launchdarkly.com/galaxy/supercharge-your-release-pipeline/

03

Deployment Speed

KPIs rarely function in isolation, and trying to answer even just one question
may involve looking at more disparate data points.

Timing the speed of your deployments —as well as other indicators like its
99th percentile maximums—will let you know concretely how long it takes to
ship a new change. This includes timing your infrastructure (how long it takes
for code to be deployed, how long it takes for servers to reboot) as well as any
Cl (continuous integration) test suites that must return green before a
deployment can proceed.

If you observe that teams are releasing infrequently, the length of time it takes
for a deployment to succeed might be one reason why. This hard data is an
opportunity for determining how to speed up the overall process. Deployment
speed also allows for faster feedback cycles to determine if the feature is
useful and operating correctly.

04

Release Downtime

Few modern applications consist of just a single monolith. Additional
infrastructure, such as databases, key-value stores, and event queues are
often necessary data storage components.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES



If these systems are paused, or even “harmlessly” error out during
deployments, it could be indicative of larger structural problems in your
processes.

Plan for unexpected downtime and add mitigations such as retry queues or
other fail-over tactics. If these other systems are interrupted for extended
periods of time on every deployment (or there are a burst of errors on every
release), it could mean that you ought to add more fail-over mechanisms,
tests, or looser coupling.

Launch with Reduced Risks

If you're skeptical of how shipping faster can reduce risk,
check out this presentation from LaunchDarkly’s Principal
Developer Advocate, Heidi Waterhouse.

Watch now =

05

Number of Expected Deployments

Typically, you'd want your software releases to occur on a planned schedule,
such as after a sprint or on a specific day every week. This helps plan work
around gathering feedback and keeps work flows consistent. But of course, in
reality, you may be releasing several times a week, to patch bugs and include
other hotfixes.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES


https://launchdarkly.com/blog/safe-sensible-reduced-risk-deployment-and-launch/

A steady increase in the number of hotfixes could be a sign that more
emphasis is needed for your team’s QA/testing stages, or that you have a lot
of technical debt in your codebase. Focusing on testing, code cleanup, and
stability could mitigate the frequent problems cropping up in production.
Identifying how many releases correct issues in earlier versions could help
you identify where in your feature life cycle more cautious code review is
necessary.

06

Number of Rollbacks

Of course, as developers, we've come to expect the unexpected when code
and users meet. Unplanned situations are rare, but they do happen; if they’re
dangerous enough, it might necessitate a full reversion of newly- deployed
code.

You can get ahead of these sorts of problems by tracking the number of times
your teams perform a rollback. Don’t think of a rollback as a mistake made,
but as an opportunity to strengthen the development and review stages that
always occur before the deployment phase.

Ways to Measure Software Quality

There are a set of measurable leading indicators to achieve
desirable outcomes in software quality. In this presentation,
Stephen Magill, VP of Product Innovation at Sonatype,
explains the most effective measures of software
development and operations processes.

Watch now =



https://launchdarkly.com/webinars/it-revolution-forum-webinar-series/?webinar=04

Test Speed

Since testing is such an integral part of releasing software,
it too can surface KPIs for tracking. One quick way to do
this is to track how long it takes for a test suite to finish
executing. If your suite takes half an hour, it might be
responsible for infrequent deployments or otherwise
hinder productivity. Long test times could be an
opportunity to introduce more static fixtures or parallel
execution to speed things up.

What Is Continuous Testing?

Continuous testing provides an automated, end-to-
end testing solution that can integrate with an
existing development process. It can eliminate
errors and make true continuity easier throughout
the development life cycle. In this article, we
discuss the various ways your organization can
benefit from implementing continuous testing.

Read now =

Test Coverage

We all know the value of good tests, but how can we be
sure that our tests are, in fact, good?

Quantifying test coverage as a KPI can ensure that at least
most aspects of your app are being thoroughly tested.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES


https://launchdarkly.com/blog/what-is-continuous-testing-a-straightforward-introduction1/

Release Testing Explained

Release testing refers to coding practices and test strategies
that give teams confidence that a software release candidate
is ready for users. Release testing aims to find and eliminate
errors and bugs from a software release so that it can be
released to users. In this article, dive in and explore several
methods used to perform release testing.

Read now =

09

Test Flakiness

All too common (and frustrating) in software testing is the appearance of
the dreaded test flake.

If you're unfamiliar with the concept, a flake occurs when an individual test
fails on one test run, but then passes on the subsequent test run. Many
testing frameworks run your tests in a random order precisely to surface
test flakes, as proper test-passing software should not depend on the order
of the test.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES


https://launchdarkly.com/blog/get-a-detailed-explanation-of-release-testing-several/

The appearance of a test flake might be a one-off, or it may indicate a less-
than-ideal testing approach. Worse, it might even indicate a significant bug
in your software.

Whatever the cause, flaky tests undermine confidence in the entire test
suite, not to mention extend the deployment time since the test suite needs
to be re-run to pass.

Your test-flake count should always be at (or at least, trending down
towards) zero.

10

Feature Lifespan

Once a feature is live, start measuring how long it remains a part of the app
against how often it’s used. For example, you could consider eliminating a
feature added four years ago but used by less than 1% of your user base.

Removing unused code from your application is about more than just
keeping things clean; it’s also a way to keep technical debt from piling up.
Sometimes, more modern features are inextricably dependent on outdated
systems. By consistently updating older features—or better, pruning them
completely if they’re mostly unused—you reduce the effort needed to make
future progress.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES



Wrapping Up

Choosing what to measure for your KPl is only one part of the equation: it’s up
to you to determine what constitutes a “good” metric. If your tests really do
need to take half an hour to run, then your numbers will clearly be different
than an app whose test suite takes thirty seconds. Nonetheless, there will still
be the same concerns around keeping to that predefined baseline.

Once you've figured out what to track, there’s the question of how to track it.
You'll likely be able to integrate into your existing monitoring software,
whether that’s Prometheus, Grafana, or Datadog.

And, although these are just some of our suggestions, you're likely to come
up with many more KPIs that are more relevant to your specific needs. Your
choice of KPIs might be subjective, but KPIs are critical to producing quicker,
consistent, and error-free software releases.

10 CRITICAL KPIS FOR STRONGER SOFTWARE RELEASES



Empowering all
teams to deliver and
control their software.

Getademo

launchdarkly.com | sales@launchdarkly.com %


https://launchdarkly.com/request-a-demo/
https://launchdarkly.com
mailto:sales@launchdarkly.com

